ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution
- URL: http://arxiv.org/abs/2307.14010v1
- Date: Wed, 26 Jul 2023 07:45:14 GMT
- Title: ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution
- Authors: Mingjin Zhang, Chi Zhang, Qiming Zhang, Jie Guo, Xinbo Gao, Jing Zhang
- Abstract summary: Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
- Score: 76.7408734079706
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a
high-resolution hyperspectral image from a low-resolution observation. However,
the prevailing CNN-based approaches have shown limitations in building
long-range dependencies and capturing interaction information between spectral
features. This results in inadequate utilization of spectral information and
artifacts after upsampling. To address this issue, we propose ESSAformer, an
ESSA attention-embedded Transformer network for single-HSI-SR with an iterative
refining structure. Specifically, we first introduce a robust and
spectral-friendly similarity metric, \ie, the spectral correlation coefficient
of the spectrum (SCC), to replace the original attention matrix and
incorporates inductive biases into the model to facilitate training. Built upon
it, we further utilize the kernelizable attention technique with theoretical
support to form a novel efficient SCC-kernel-based self-attention (ESSA) and
reduce attention computation to linear complexity. ESSA enlarges the receptive
field for features after upsampling without bringing much computation and
allows the model to effectively utilize spatial-spectral information from
different scales, resulting in the generation of more natural high-resolution
images. Without the need for pretraining on large-scale datasets, our
experiments demonstrate ESSA's effectiveness in both visual quality and
quantitative results.
Related papers
- Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution [47.12985199570964]
We propose a novel cross-scope spatial-spectral Transformer (CST) to investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution.
Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics.
Experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2023-11-29T03:38:56Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Implicit Neural Representations (INRs) are making strides as a novel and effective representation.
We propose a novel HSI reconstruction model based on INR which represents HSI by a continuous function mapping a spatial coordinate to its corresponding spectral radiance values.
arXiv Detail & Related papers (2021-12-20T14:07:54Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.