論文の概要: The Vehicle Trajectory Prediction Based on ResNet and EfficientNet Model
- arxiv url: http://arxiv.org/abs/2201.09973v1
- Date: Mon, 24 Jan 2022 22:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-27 09:17:42.682205
- Title: The Vehicle Trajectory Prediction Based on ResNet and EfficientNet Model
- Title(参考訳): ResNetと効率的なネットモデルに基づく車両軌道予測
- Authors: Ruyi Qu, Shukai Huang, Jiexuan Zhou, ChenXi Fan, ZhiYuan Yan
- Abstract要約: ネットワークの深さ、幅、画像の解像度は、モデルの精度と予測結果を制限する重要な理由である。
本稿では、RESNETネットワークと効率的なネットネットワークを組み合わせることで、ネットワーク深度を大幅に向上させる。
また,実験結果から,提案モデルが最適予測結果を得ることを示した。
- 参考スコア(独自算出の注目度): 1.5261934822836534
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: At present, a major challenge for the application of automatic driving
technology is the accurate prediction of vehicle trajectory. With the vigorous
development of computer technology and the emergence of convolution depth
neural network, the accuracy of prediction results has been improved. But, the
depth, width of the network and image resolution are still important reasons
that restrict the accuracy of the model and the prediction results. The main
innovation of this paper is the combination of RESNET network and efficient net
network, which not only greatly increases the network depth, but also
comprehensively changes the choice of network width and image resolution, so as
to make the model performance better, but also save computing resources as much
as possible. The experimental results also show that our proposed model obtains
the optimal prediction results. Specifically, the loss value of our method is
separately 4 less and 2.1 less than that of resnet and efficientnet method.
- Abstract(参考訳): 現在、自動走行技術の応用における大きな課題は、車両軌道の正確な予測である。
コンピュータ技術の活発な発展と畳み込み深度ニューラルネットワークの出現により、予測結果の精度が向上した。
しかし、ネットワークの深さ、幅、画像の解像度は、モデルの精度と予測結果を制限する重要な理由である。
本論文の主な革新は,ネットワーク深度を大幅に向上させるだけでなく,ネットワーク幅と画像解像度の選択肢を包括的に変更することで,モデル性能を向上すると同時に,コンピュータリソースを可能な限り節約する,RESNETネットワークと効率的なネットネットワークの組み合わせである。
また,実験結果から,提案モデルが最適予測結果を得ることを示した。
特に,本手法の損失値は,resnet 法や efficientnet 法に比べ,それぞれ4.1 未満である。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
生画像のスケーリングはアウト・オブ・ディストリビューションデータを生成するため、ネットワークを騙すための敵攻撃の可能性がある。
本研究では,ImageNet Challengeデータセットのサブセットを複数でスケーリングすることで,Scaling-DistortionデータセットのImageNet-CSを提案する。
論文 参考訳(メタデータ) (2022-09-02T08:06:58Z) - Dynamic Resolution Network [40.64164953983429]
現代のCNNの入力解像度の冗長性については、完全には研究されていない。
本稿では,各サンプルに基づいて動的に分解能を決定できる新しい動的分解能ネットワーク(DRNet)を提案する。
DRNetは34%の精度で同様の性能を実現しているが、ImageNetのResNet-50に比べて10%の精度で1.4%の精度向上を実現している。
論文 参考訳(メタデータ) (2021-06-05T13:48:33Z) - Enhancing sensor resolution improves CNN accuracy given the same number
of parameters or FLOPS [53.10151901863263]
パラメータ数やFLOPSが同じで、高い入力解像度で高い精度が得られるように、ネットワークを変更することは、ほぼ常に可能であることを示す。
MNIST、Fashion MNIST、CIFAR10データセットに関する予備的研究は、提案手法の効率性を実証している。
論文 参考訳(メタデータ) (2021-03-09T06:47:01Z) - ResPerfNet: Deep Residual Learning for Regressional Performance Modeling
of Deep Neural Networks [0.16311150636417257]
本稿では,ディープラーニングに基づくResPerfNetを提案する。この手法は,ニューラルネットワークの性能を予測するために,対象プラットフォーム上で得られた代表データセットを用いて残差ニューラルネットワークをトレーニングする。
実験の結果,ResPerfNetは個々のニューラルネットワーク層と,さまざまなプラットフォーム上でのフルネットワークモデルの実行時間を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2020-12-03T03:02:42Z) - EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation using
Accelerated Neuroevolution with Weight Transfer [82.28607779710066]
生物進化にインスパイアされたニューラル・アーキテクチャー・サーチの一形態であるニューラル・エボリューションの2次元ヒューマン・ポーズ・ネットワークの設計への応用について検討する。
本手法は,最先端の手設計ネットワークよりも効率的かつ高精度なネットワーク設計を実現する。
論文 参考訳(メタデータ) (2020-11-17T05:56:16Z) - Dynamic Graph Neural Network for Traffic Forecasting in Wide Area
Networks [1.0934800950965335]
我々は,マルチステップネットワークトラフィック予測のための非自動グラフベースニューラルネットワークを開発した。
我々は,米国エネルギー省の専用科学ネットワークESnetの実際のトラフィックに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2020-08-28T17:47:11Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
本稿では,ディープニューラルネットワークのための完全微分可能なスペーシフィケーション手法を提案する。
提案手法は,ネットワークのスパース化構造と重み付けの両方をエンドツーエンドに学習することができる。
私たちの知る限りでは、これが最初の完全に差別化可能なスパーシフィケーション手法である。
論文 参考訳(メタデータ) (2019-10-08T03:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。