論文の概要: An Algorithmic Framework for Bias Bounties
- arxiv url: http://arxiv.org/abs/2201.10408v4
- Date: Mon, 9 May 2022 19:44:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 14:28:34.832286
- Title: An Algorithmic Framework for Bias Bounties
- Title(参考訳): バイアスバウンティのためのアルゴリズムフレームワーク
- Authors: Ira Globus-Harris, Michael Kearns, Aaron Roth
- Abstract要約: 我々は「バイアス報奨金」のためのアルゴリズムフレームワークの提案と分析を行う。
バイアス報奨金(bias bounties)とは、トレーニングされたモデルの改善を提案するために外部参加者が招待されるイベントである。
我々のフレームワークは、参加者が任意のサブグループの改善を提出し、アルゴリズムによって更新されたモデルに組み込むことを可能にする。
- 参考スコア(独自算出の注目度): 11.246046276053898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and analyze an algorithmic framework for "bias bounties": events
in which external participants are invited to propose improvements to a trained
model, akin to bug bounty events in software and security. Our framework allows
participants to submit arbitrary subgroup improvements, which are then
algorithmically incorporated into an updated model. Our algorithm has the
property that there is no tension between overall and subgroup accuracies, nor
between different subgroup accuracies, and it enjoys provable convergence to
either the Bayes optimal model or a state in which no further improvements can
be found by the participants. We provide formal analyses of our framework,
experimental evaluation, and findings from a preliminary bias bounty event.
- Abstract(参考訳): 我々は,外部参加者がソフトウェアやセキュリティのバグ報奨金イベントのように,トレーニングモデルの改善を提案するイベントである「バイアス報奨金」のアルゴリズムフレームワークを提案し,分析する。
私たちのフレームワークでは、参加者が任意のサブグループの改善を提出することができます。
提案手法は,全群と部分群の間には緊張関係がなく,また異なる部分群アキュラティシーも存在せず,ベイズ最適モデルや,さらに改善が得られない状態に対して,証明可能な収束を享受する。
我々は,予備的バイアス報奨イベントの枠組み,実験評価,および結果の形式的分析を行った。
関連論文リスト
- Discrete Choice Multi-Armed Bandits [0.0]
本稿では,個別選択モデルのカテゴリとオンライン学習とマルチアームバンディットアルゴリズムの領域の関連性を確立する。
我々は、Exp3アルゴリズムを特定のケースとして包含して、包括的アルゴリズム群に対するサブ線形後悔境界を提供する。
一般化されたネストロジットモデルからインスピレーションを得た,対向多重武装バンディットアルゴリズムの新たなファミリーを導入する。
論文 参考訳(メタデータ) (2023-10-01T03:41:04Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Piecewise-Stationary Combinatorial Semi-Bandit with Causally Related
Rewards [5.347237827669861]
本稿では,因果関係の報酬を用いた定常半帯域問題について検討する。
非定常環境では、ベースアームの分布の変化、報酬間の因果関係、またはその両方が報酬生成プロセスを変化させる。
この問題は半帯域設定で増加し、意思決定者は選択したアームの束の結果のみを観察する。
論文 参考訳(メタデータ) (2023-07-26T12:06:13Z) - Robust Consensus Clustering and its Applications for Advertising
Forecasting [18.242055675730253]
我々は,専門家の意見に共通する根拠となる真実を見出すことのできる,ロバストなコンセンサスクラスタリングという新しいアルゴリズムを提案する。
提案手法を実世界の広告キャンペーンセグメンテーションと予測タスクに適用する。
論文 参考訳(メタデータ) (2022-12-27T21:49:04Z) - Individually Fair Learning with One-Sided Feedback [15.713330010191092]
我々は,学習者が正に予測されたインスタンスに対してのみ真のラベルを観察できる,一方的なフィードバックを伴うオンライン学習問題を考察する。
各ラウンドで$k$インスタンスが到着し、学習者が配置したランダム化ポリシーに従って分類結果を受け取る。
そこで我々は,一方的なフィードバックによるオンライン学習の問題から,文脈的半帯域問題に対する公平性違反を報告したパネルを構築。
論文 参考訳(メタデータ) (2022-06-09T12:59:03Z) - Incentivizing Combinatorial Bandit Exploration [87.08827496301839]
自己関心のあるユーザに対してレコメンデーションシステムでアクションを推奨するバンディットアルゴリズムを考える。
ユーザーは他のアクションを自由に選択でき、アルゴリズムの推奨に従うためにインセンティブを得る必要がある。
ユーザは悪用を好むが、アルゴリズムは、前のユーザから収集した情報を活用することで、探索にインセンティブを与えることができる。
論文 参考訳(メタデータ) (2022-06-01T13:46:25Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Group Testing with Non-identical Infection Probabilities [59.96266198512243]
そこで我々は,集合形成法を用いた適応型グループテストアルゴリズムを開発した。
提案アルゴリズムは, エントロピー下界に近い性能を示す。
論文 参考訳(メタデータ) (2021-08-27T17:53:25Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。