Meta-learning Spiking Neural Networks with Surrogate Gradient Descent
- URL: http://arxiv.org/abs/2201.10777v1
- Date: Wed, 26 Jan 2022 06:53:46 GMT
- Title: Meta-learning Spiking Neural Networks with Surrogate Gradient Descent
- Authors: Kenneth Stewart, Emre Neftci
- Abstract summary: Bi-level learning, such as meta-learning, is increasingly used in deep learning to overcome limitations.
We show that SNNs meta-trained using MAML match or exceed the performance of conventional ANNs meta-trained with MAML on event-based meta-datasets.
Our results emphasize how meta-learning techniques can become instrumental for deploying neuromorphic learning technologies on real-world problems.
- Score: 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive "life-long" learning at the edge and during online task performance
is an aspirational goal of AI research. Neuromorphic hardware implementing
Spiking Neural Networks (SNNs) are particularly attractive in this regard, as
their real-time, event-based, local computing paradigm makes them suitable for
edge implementations and fast learning. However, the long and iterative
learning that characterizes state-of-the-art SNN training is incompatible with
the physical nature and real-time operation of neuromorphic hardware. Bi-level
learning, such as meta-learning is increasingly used in deep learning to
overcome these limitations. In this work, we demonstrate gradient-based
meta-learning in SNNs using the surrogate gradient method that approximates the
spiking threshold function for gradient estimations. Because surrogate
gradients can be made twice differentiable, well-established, and effective
second-order gradient meta-learning methods such as Model Agnostic Meta
Learning (MAML) can be used. We show that SNNs meta-trained using MAML match or
exceed the performance of conventional ANNs meta-trained with MAML on
event-based meta-datasets. Furthermore, we demonstrate the specific advantages
that accrue from meta-learning: fast learning without the requirement of high
precision weights or gradients. Our results emphasize how meta-learning
techniques can become instrumental for deploying neuromorphic learning
technologies on real-world problems.
Related papers
- Neural Routing in Meta Learning [9.070747377130472]
We aim to improve the model performance of the current meta learning algorithms by selectively using only parts of the model conditioned on the input tasks.
In this work, we describe an approach that investigates task-dependent dynamic neuron selection in deep convolutional neural networks (CNNs) by leveraging the scaling factor in the batch normalization layer.
We find that the proposed approach, neural routing in meta learning (NRML), outperforms one of the well-known existing meta learning baselines on few-shot classification tasks.
arXiv Detail & Related papers (2022-10-14T16:31:24Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
We propose Self-improving Momentum Target (SiMT) to improve the performance of a meta-learner.
SiMT generates the target model by adapting from the temporal ensemble of the meta-learner.
We show that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods.
arXiv Detail & Related papers (2022-10-11T06:45:15Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Can we learn gradients by Hamiltonian Neural Networks? [68.8204255655161]
We propose a meta-learner based on ODE neural networks that learns gradients.
We demonstrate that our method outperforms a meta-learner based on LSTM for an artificial task and the MNIST dataset with ReLU activations in the optimizee.
arXiv Detail & Related papers (2021-10-31T18:35:10Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - B-SMALL: A Bayesian Neural Network approach to Sparse Model-Agnostic
Meta-Learning [2.9189409618561966]
We propose a Bayesian neural network based MAML algorithm, which we refer to as the B-SMALL algorithm.
We demonstrate the performance of B-MAML using classification and regression tasks, and highlight that training a sparsifying BNN using MAML indeed improves the parameter footprint of the model.
arXiv Detail & Related papers (2021-01-01T09:19:48Z) - La-MAML: Look-ahead Meta Learning for Continual Learning [14.405620521842621]
We propose Look-ahead MAML (La-MAML), a fast optimisation-based meta-learning algorithm for online-continual learning, aided by a small episodic memory.
La-MAML achieves performance superior to other replay-based, prior-based and meta-learning based approaches for continual learning on real-world visual classification benchmarks.
arXiv Detail & Related papers (2020-07-27T23:07:01Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.