Visualizing the Diversity of Representations Learned by Bayesian Neural
Networks
- URL: http://arxiv.org/abs/2201.10859v2
- Date: Tue, 14 Nov 2023 13:23:25 GMT
- Title: Visualizing the Diversity of Representations Learned by Bayesian Neural
Networks
- Authors: Dennis Grinwald, Kirill Bykov, Shinichi Nakajima, Marina M.-C. H\"ohne
- Abstract summary: We investigate how XAI methods can be used for exploring and visualizing the diversity of feature representations learned by Bayesian Neural Networks (BNNs)
Our work provides new insights into the emphposterior distribution in terms of human-understandable feature information with regard to the underlying decision making strategies.
- Score: 5.660714085843854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence (XAI) aims to make learning machines less
opaque, and offers researchers and practitioners various tools to reveal the
decision-making strategies of neural networks. In this work, we investigate how
XAI methods can be used for exploring and visualizing the diversity of feature
representations learned by Bayesian Neural Networks (BNNs). Our goal is to
provide a global understanding of BNNs by making their decision-making
strategies a) visible and tangible through feature visualizations and b)
quantitatively measurable with a distance measure learned by contrastive
learning. Our work provides new insights into the \emph{posterior} distribution
in terms of human-understandable feature information with regard to the
underlying decision making strategies. The main findings of our work are the
following: 1) global XAI methods can be applied to explain the diversity of
decision-making strategies of BNN instances, 2) Monte Carlo dropout with
commonly used Dropout rates exhibit increased diversity in feature
representations compared to the multimodal posterior approximation of
MultiSWAG, 3) the diversity of learned feature representations highly
correlates with the uncertainty estimate for the output and 4) the inter-mode
diversity of the multimodal posterior decreases as the network width increases,
while the intra mode diversity increases. These findings are consistent with
the recent Deep Neural Networks theory, providing additional intuitions about
what the theory implies in terms of humanly understandable concepts.
Related papers
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation [51.21190751266442]
Domain adaptation (DA) tries to tackle the scenarios when the test data does not fully follow the same distribution of the training data.
By learning from large-scale unlabeled samples, self-supervised learning has now become a new trend in deep learning.
We propose a novel textbfSelf-textbfSupervised textbfGraph Neural Network (SSG) to enable more effective inter-task information exchange and knowledge sharing.
arXiv Detail & Related papers (2022-04-08T03:37:56Z) - Finding Representative Interpretations on Convolutional Neural Networks [43.25913447473829]
We develop a novel unsupervised approach to produce a highly representative interpretation for a large number of similar images.
We formulate the problem of finding representative interpretations as a co-clustering problem, and convert it into a submodular cost submodular cover problem.
Our experiments demonstrate the excellent performance of our method.
arXiv Detail & Related papers (2021-08-13T20:17:30Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data.
We develop a novel multiview GNN for multimodal brain networks.
In particular, we regard each modality as a view for brain networks and employ contrastive learning for multimodal fusion.
arXiv Detail & Related papers (2021-07-07T13:49:57Z) - Learning distinct features helps, provably [98.78384185493624]
We study the diversity of the features learned by a two-layer neural network trained with the least squares loss.
We measure the diversity by the average $L$-distance between the hidden-layer features.
arXiv Detail & Related papers (2021-06-10T19:14:45Z) - Hold me tight! Influence of discriminative features on deep network
boundaries [63.627760598441796]
We propose a new perspective that relates dataset features to the distance of samples to the decision boundary.
This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets.
arXiv Detail & Related papers (2020-02-15T09:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.