Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning
- URL: http://arxiv.org/abs/2410.05484v1
- Date: Mon, 7 Oct 2024 20:44:53 GMT
- Title: Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning
- Authors: Alec F. Diallo, Vaishak Belle, Paul Patras,
- Abstract summary: We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
- Score: 9.947555560412397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their success and widespread adoption, the opaque nature of deep neural networks (DNNs) continues to hinder trust, especially in critical applications. Current interpretability solutions often yield inconsistent or oversimplified explanations, or require model changes that compromise performance. In this work, we introduce TRACER, a novel method grounded in causal inference theory designed to estimate the causal dynamics underpinning DNN decisions without altering their architecture or compromising their performance. Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs. Based on this analysis, we determine the importance of individual features, and construct a high-level causal map by grouping functionally similar layers into cohesive causal nodes, providing a structured and interpretable view of how different parts of the network influence the decisions. TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications. Through comprehensive evaluations across diverse datasets, we demonstrate TRACER's effectiveness over existing methods and show its potential for creating highly compressed yet accurate models, illustrating its dual versatility in both understanding and optimizing DNNs.
Related papers
- DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains.
Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process.
We introduce a more realistic graph data generation model using Structural Causal Models (SCMs)
We propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings.
arXiv Detail & Related papers (2024-10-27T00:22:18Z) - Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models [0.0]
We employ two structurally different and complementary DNN-based models to classify individual cognitive states.
We show that despite the architectural differences, both models consistently produce a robust relationship between prediction accuracy and individual cognitive performance.
arXiv Detail & Related papers (2024-08-14T15:25:51Z) - Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning [11.13665894783481]
Causal opacity denotes the difficulty in understanding the "hidden" causal structure underlying the decisions of deep neural network (DNN) models.
This work introduces Causal Concept Graph Models (Causal CGMs), a class of interpretable models whose decision-making process is causally transparent by design.
Our experiments show that Causal CGMs can: (i) match the generalisation performance of causally opaque models, (ii) enable human-in-the-loop corrections to mispredicted intermediate reasoning steps, and (iii) support the analysis of interventional and counterfactual scenarios.
arXiv Detail & Related papers (2024-05-26T10:15:20Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications.
In other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations.
We propose a novel framework to test the robustness of current state-of-the-art models.
arXiv Detail & Related papers (2021-03-27T19:58:06Z) - Interpreting Deep Neural Networks with Relative Sectional Propagation by
Analyzing Comparative Gradients and Hostile Activations [37.11665902583138]
We propose a new attribution method, Relative Sectional Propagation (RSP), for decomposing the output predictions of Deep Neural Networks (DNNs)
We define hostile factor as an element that interferes with finding the attributions of the target and propagates it in a distinguishable way to overcome the non-suppressed nature of activated neurons.
Our method makes it possible to decompose the predictions of DNNs with clearer class-discriminativeness and detailed elucidations of activation neurons compared to the conventional attribution methods.
arXiv Detail & Related papers (2020-12-07T03:11:07Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
We evaluate the intermediate outputs of NMNs on NLVR2 and DROP datasets.
We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour.
arXiv Detail & Related papers (2020-05-02T06:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.