論文の概要: Heterogeneous Peer Effects in the Linear Threshold Model
- arxiv url: http://arxiv.org/abs/2201.11242v1
- Date: Thu, 27 Jan 2022 00:23:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-29 02:04:09.160537
- Title: Heterogeneous Peer Effects in the Linear Threshold Model
- Title(参考訳): 線形閾値モデルにおける不均一ピア効果
- Authors: Christopher Tran, Elena Zheleva
- Abstract要約: 線形閾値モデル(Linear Threshold Model)は、ソーシャルネットワークを通じて情報がどのように拡散するかを記述する。
本研究では,個々の閾値を推定するための因果推論手法を提案する。
合成および実世界のデータセットに対する実験結果から、線形閾値モデルにおける個々のレベルの閾値をより正確に予測できることが示唆された。
- 参考スコア(独自算出の注目度): 13.452510519858995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Linear Threshold Model is a widely used model that describes how
information diffuses through a social network. According to this model, an
individual adopts an idea or product after the proportion of their neighbors
who have adopted it reaches a certain threshold. Typical applications of the
Linear Threshold Model assume that thresholds are either the same for all
network nodes or randomly distributed, even though some people may be more
susceptible to peer pressure than others. To address individual-level
differences, we propose causal inference methods for estimating individual
thresholds that can more accurately predict whether and when individuals will
be affected by their peers. We introduce the concept of heterogeneous peer
effects and develop a Structural Causal Model which corresponds to the Linear
Threshold Model and supports heterogeneous peer effect identification and
estimation. We develop two algorithms for individual threshold estimation, one
based on causal trees and one based on causal meta-learners. Our experimental
results on synthetic and real-world datasets show that our proposed models can
better predict individual-level thresholds in the Linear Threshold Model and
thus more precisely predict which nodes will get activated over time.
- Abstract(参考訳): 線形閾値モデル(Linear Threshold Model)は、ソーシャルネットワークを通じて情報がどのように拡散するかを記述するモデルである。
このモデルによると、個人はそれを採用した隣人の比率が一定の閾値に達した後、アイデアや製品を採用する。
線形しきい値モデル(英語版)の典型的な応用は、しきい値が全てのネットワークノードで同じかランダムに分散しているかのどちらかであると仮定している。
個人レベルの差異に対処するために,個人が仲間に影響を受けるかどうかをより正確に予測できる閾値を推定するための因果推論手法を提案する。
本稿では,不均質ピア効果の概念を導入し,線形しきい値モデルに対応する構造因果モデルを構築し,異種ピア効果の同定と推定を支援する。
そこで我々は,因果木と因果メタ学習者に基づく2つのしきい値推定アルゴリズムを開発した。
合成および実世界のデータセットに対する実験結果から,提案モデルでは線形閾値モデルの個々の閾値をより正確に予測し,時間とともにどのノードが活性化されるかをより正確に予測できることがわかった。
関連論文リスト
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Distilling Influences to Mitigate Prediction Churn in Graph Neural
Networks [4.213427823201119]
類似した性能を持つモデルは、予測チャーンと呼ばれる個々のサンプルの予測に大きな不一致を示す。
本研究では,モデル間でノードが使用する理由の変動を定量化するために,影響差(ID)と呼ばれる新しい指標を提案する。
また、安定なノードと不安定な予測を持つノードの違いも考慮し、どちらも同じ理由で異なる理由を生かしていると仮定する。
効率的な近似法としてDropDistillation(DD)を導入する。
論文 参考訳(メタデータ) (2023-10-02T07:37:28Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
主な課題は、パラメータにアクセスせずにターゲットモデルの勾配を推定し、多様なトレーニングサンプルを生成することである。
そこで本研究では,2人の学生が左右対称に学習し,学生が反対するサンプルを生成するための基準を提案する。
我々の新しい最適化フレームワークは、目標モデルのより正確な勾配推定と、ベンチマーク分類データセットの精度向上を提供する。
論文 参考訳(メタデータ) (2023-09-18T18:11:31Z) - A performance characteristic curve for model evaluation: the application
in information diffusion prediction [3.8711489380602804]
拡散データ中のランダム性を定量化するために,情報エントロピーに基づくメトリクスを提案し,モデルのランダム性と予測精度の間のスケーリングパターンを同定する。
異なるシーケンス長、システムサイズ、ランダム性によるパターンのデータポイントは、すべて単一の曲線に崩壊し、正しい予測を行うモデル固有の能力を取得する。
曲線の妥当性は、同じ家系の3つの予測モデルによって検証され、既存の研究と一致して結論に達する。
論文 参考訳(メタデータ) (2023-09-18T07:32:57Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
現実の世界における予測モデルの適用を防ぐための最も一般的な問題の1つは一般化の欠如である。
ニューラルネットワーク分類モデルにより生成された特定の予測の不確かさを推定する新しい手法を提案する。
提案手法は,この予測に対応するロジット値の分布に基づいて,特定の予測の信頼性を推定する。
論文 参考訳(メタデータ) (2022-10-14T12:32:50Z) - On the Prediction Instability of Graph Neural Networks [2.3605348648054463]
トレーニングされたモデルの不安定性は、マシンラーニングシステムの信頼性、信頼性、信頼性に影響を与える可能性がある。
最新のグラフニューラルネットワーク(GNN)によるノード分類の不安定性の予測を系統的に評価する。
不正に分類されたノードの最大3分の1は、アルゴリズムの実行によって異なることがわかった。
論文 参考訳(メタデータ) (2022-05-20T10:32:59Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - A Twin Neural Model for Uplift [59.38563723706796]
Upliftは条件付き治療効果モデリングの特定のケースです。
相対リスクのベイズ解釈との関連性を利用して定義した新たな損失関数を提案する。
本提案手法は,シミュレーション設定の最先端と大規模ランダム化実験による実データとの競合性を示す。
論文 参考訳(メタデータ) (2021-05-11T16:02:39Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。