Broadband Squeezed Microwaves and Amplification with a Josephson
Traveling-Wave Parametric Amplifier
- URL: http://arxiv.org/abs/2201.11261v3
- Date: Wed, 15 Feb 2023 05:01:21 GMT
- Title: Broadband Squeezed Microwaves and Amplification with a Josephson
Traveling-Wave Parametric Amplifier
- Authors: Jack Y. Qiu, Arne Grimsmo, Kaidong Peng, Bharath Kannan, Benjamin
Lienhard, Youngkyu Sung, Philip Krantz, Vladimir Bolkhovsky, Greg Calusine,
David Kim, Alex Melville, Bethany M. Niedzielski, Jonilyn Yoder, Mollie E.
Schwartz, Terry P. Orlando, Irfan Siddiqi, Simon Gustavsson, Kevin P.
O'Brien, William D. Oliver
- Abstract summary: Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy, and quantum information science.
We develop a dual-pump, broadband Josephson traveling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers.
Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation.
- Score: 0.8527063867655793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Squeezing of the electromagnetic vacuum is an essential metrological
technique used to reduce quantum noise in applications spanning gravitational
wave detection, biological microscopy, and quantum information science. In
superconducting circuits, the resonator-based Josephson-junction parametric
amplifiers conventionally used to generate squeezed microwaves are constrained
by a narrow bandwidth and low dynamic range. In this work, we develop a
dual-pump, broadband Josephson traveling-wave parametric amplifier that
combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing
on par with the best resonator-based squeezers. We also demonstrate two-mode
squeezing at microwave frequencies with bandwidth in the gigahertz range that
is almost two orders of magnitude wider than that of contemporary
resonator-based squeezers. Our amplifier is capable of simultaneously creating
entangled microwave photon pairs with large frequency separation, with
potential applications including high-fidelity qubit readout, quantum
illumination and teleportation.
Related papers
- Broadband CPW-based impedance-transformed Josephson parametric amplifier [13.002501537530513]
We present a device based on the broadband impedance-transformed Josephson parametric amplifier (IMPA)
The device shows an instantaneous bandwidth of 700(200) MHz for 15(20) dB gain with an average saturation power of -110 dBm and near quantum-limited added noise.
arXiv Detail & Related papers (2023-10-26T01:04:55Z) - Demonstration of a Quantum Noise Limited Traveling-Wave Parametric
Amplifier [0.0]
Recent progress in quantum computing and the development of novel detector technologies for astrophysics is driving the need for high-gain, broadband, and quantum-limited amplifiers.
We present a purely traveling-wave parametric amplifier (TWPA) using an inverted NbTiN microstrip and amorphous Silicon dielectric.
arXiv Detail & Related papers (2023-06-19T15:45:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Broadband SNAIL parametric amplifier with microstrip impedance
transformer [0.0]
We present a quantum-limited 3-wave-mixing parametric amplifier based on superconducting nonlinear asymmetric inductive elements.
operating in a current-pumped mode, we experimentally demonstrate an average gain of $17 dB$ across $300 MHz$ bandwidth.
The amplifier can be fabricated using a simple technology with just a one e-beam lithography step.
arXiv Detail & Related papers (2022-10-27T11:15:58Z) - Intermodulation Distortion in a Josephson Traveling Wave Parametric
Amplifier [2.814412986458045]
Josephson traveling wave parametric amplifiers enable amplification of weak microwave signals close to the quantum limit.
Intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits.
arXiv Detail & Related papers (2022-10-10T16:03:23Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Dual-laser self-injection locking to an integrated microresonator [93.17495788476688]
We experimentally demonstrate the dual-laser SIL of two multifrequency laser diodes to different modes of an integrated Si$_3$N$_4$ microresonator.
Locking both lasers to the same mode results in a simultaneous frequency and phase stabilization and coherent addition of their outputs.
arXiv Detail & Related papers (2022-01-06T16:25:15Z) - Observation of two-mode squeezing in a traveling wave parametric
amplifier [0.0]
We report operation of a TWPA as a source of two-mode squeezed microwave radiation.
We demonstrate broadband entanglement generation between two modes separated by up to 400 MHz.
arXiv Detail & Related papers (2021-11-05T18:45:29Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.