Intermodulation Distortion in a Josephson Traveling Wave Parametric
Amplifier
- URL: http://arxiv.org/abs/2210.04799v1
- Date: Mon, 10 Oct 2022 16:03:23 GMT
- Title: Intermodulation Distortion in a Josephson Traveling Wave Parametric
Amplifier
- Authors: Ants Remm, Sebastian Krinner, Nathan Lacroix, Christoph Hellings,
Francois Swiadek, Graham Norris, Christopher Eichler, Andreas Wallraff
- Abstract summary: Josephson traveling wave parametric amplifiers enable amplification of weak microwave signals close to the quantum limit.
Intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits.
- Score: 2.814412986458045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Josephson traveling wave parametric amplifiers enable the amplification of
weak microwave signals close to the quantum limit with large bandwidth, which
has a broad range of applications in superconducting quantum computing and in
the operation of single-photon detectors. While the large bandwidth allows for
their use in frequency-multiplexed detection architectures, an increased number
of readout tones per amplifier puts more stringent requirements on the dynamic
range to avoid saturation. Here, we characterize the undesired mixing processes
between the different frequency-multiplexed tones applied to a Josephson
traveling wave parametric amplifier, a phenomenon also known as intermodulation
distortion. The effect becomes particularly significant when the amplifier is
operated close to its saturation power. Furthermore, we demonstrate that
intermodulation distortion can lead to significant crosstalk and reduction of
fidelity for multiplexed readout of superconducting qubits. We suggest using
large detunings between the pump and signal frequencies to mitigate crosstalk.
Our work provides insights into the limitations of current Josephson traveling
wave parametric amplifiers and highlights the importance of performing further
research on these devices.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Selective Single and Double-Mode Quantum Limited Amplifier [0.0]
A quantum-limited amplifier enables the amplification of weak signals while introducing minimal noise dictated by the principles of quantum mechanics.
These amplifiers serve a broad spectrum of applications in quantum computing, including fast and accurate readout of superconducting qubits and spins.
We experimentally develop a novel quantum-limited amplifier based on superconducting kinetic inductance.
arXiv Detail & Related papers (2023-11-20T02:37:58Z) - Broadband CPW-based impedance-transformed Josephson parametric amplifier [13.002501537530513]
We present a device based on the broadband impedance-transformed Josephson parametric amplifier (IMPA)
The device shows an instantaneous bandwidth of 700(200) MHz for 15(20) dB gain with an average saturation power of -110 dBm and near quantum-limited added noise.
arXiv Detail & Related papers (2023-10-26T01:04:55Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Broadband SNAIL parametric amplifier with microstrip impedance
transformer [0.0]
We present a quantum-limited 3-wave-mixing parametric amplifier based on superconducting nonlinear asymmetric inductive elements.
operating in a current-pumped mode, we experimentally demonstrate an average gain of $17 dB$ across $300 MHz$ bandwidth.
The amplifier can be fabricated using a simple technology with just a one e-beam lithography step.
arXiv Detail & Related papers (2022-10-27T11:15:58Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z) - Broadband Squeezed Microwaves and Amplification with a Josephson
Traveling-Wave Parametric Amplifier [0.8527063867655793]
Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy, and quantum information science.
We develop a dual-pump, broadband Josephson traveling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers.
Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation.
arXiv Detail & Related papers (2022-01-27T01:31:32Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Floquet-Mode Traveling-Wave Parametric Amplifiers [2.691339855008848]
We introduce a new class of amplifiers which encode the information in the Floquet modes of the system.
Such Floquet mode amplifiers prevent information leakage and overcome the trade-off between quantum efficiency (QE) and bandwidth.
arXiv Detail & Related papers (2021-04-16T17:54:46Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.