論文の概要: GUDN A novel guide network for extreme multi-label text classification
- arxiv url: http://arxiv.org/abs/2201.11582v1
- Date: Mon, 10 Jan 2022 07:33:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-30 11:52:40.254868
- Title: GUDN A novel guide network for extreme multi-label text classification
- Title(参考訳): GUDN 極多ラベルテキスト分類のための新しいガイドネットワーク
- Authors: Qing Wang, Hongji Shu, Jia Zhu
- Abstract要約: 本稿では,学習前のモデルを微調整し,後で分類を指示する新しいガイドネットワーク(GUDN)を構築する。
また、テキストとラベル間の潜伏空間を効果的に探索するために、生のラベルセマンティクスを使用し、予測精度をさらに向上させることができる。
- 参考スコア(独自算出の注目度): 12.975260278131078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of extreme multi-label text classification (XMTC) is to recall
some most relevant labels for a text from an extremely large label set. Though
the methods based on deep pre-trained models have reached significant
achievement, the pre-trained models are still not fully utilized. Label
semantics has not attracted much attention so far, and the latent space between
texts and labels has not been effectively explored. This paper constructs a
novel guide network (GUDN) to help fine-tune the pre-trained model to instruct
classification later. Also, we use the raw label semantics to effectively
explore the latent space between texts and labels, which can further improve
predicted accuracy. Experimental results demonstrate that GUDN outperforms
state-of-the-art methods on several popular datasets. Our source code is
released at https://github.com/wq2581/GUDN.
- Abstract(参考訳): xmtc(extreme multi-label text classification)の問題は、非常に大きなラベルセットからテキストに対して、関連するいくつかのラベルを思い出すことである。
深層学習モデルに基づく手法は大きな成果を上げているが、まだ十分に活用されていない。
ラベルのセマンティクスはあまり注目されておらず、テキストとラベルの間の潜伏した空間は効果的に探索されていない。
本稿では,事前学習モデルの微調整を支援する新しいガイドネットワーク(GUDN)を構築する。
また,テキストとラベル間の潜在空間を効率的に探索するために生ラベル意味論を用い,予測精度をさらに向上させる。
実験の結果、GUDNはいくつかの一般的なデータセットで最先端の手法より優れていることが示された。
ソースコードはhttps://github.com/wq2581/gudnで公開しています。
関連論文リスト
- Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - Rank-Aware Negative Training for Semi-Supervised Text Classification [3.105629960108712]
半教師付きテキスト分類ベースのパラダイム(SSTC)は通常、自己学習の精神を用いる。
本稿では,SSTCを雑音ラベル方式で学習する上で,RNT(Range-Aware Negative Training)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-13T08:41:36Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Label Semantic Aware Pre-training for Few-shot Text Classification [53.80908620663974]
テキスト分類システムの一般化とデータ効率を向上させるために,ラベルセマンティック・アウェア事前学習(LSAP)を提案する。
LSAPは、ラベル付き文の2次事前学習を行うことにより、ラベルセマンティクスを事前学習された生成モデル(T5)に組み込む。
論文 参考訳(メタデータ) (2022-04-14T17:33:34Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
監督されたディープラーニングは、大量の注釈付き例に依存している。
典型的な方法は、複数のノイズアノテータから学習することである。
本稿では,emphTrustable Co-label Learning (TCL)と呼ばれるデータ効率のよい手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T16:57:00Z) - Weakly-supervised Text Classification Based on Keyword Graph [30.57722085686241]
GNN によるキーワードグラフ上のキーワードキーワード相関を探索する ClassKG という新しいフレームワークを提案する。
フレームワークは反復的なプロセスであり、各イテレーションでまずキーワードグラフを構築し、擬似ラベルをアサインするタスクをキーワードサブグラフに変換する。
サブグラフアノテータによって生成された擬似ラベルを用いて、未ラベルのテキストを分類するためにテキスト分類器を訓練する。
論文 参考訳(メタデータ) (2021-10-06T08:58:02Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
ラベル混乱モデル(lcm)はラベル間の意味的重複を捉えるためにラベル混乱を学習する。
lcmは、元のホットラベルベクトルを置き換えるより優れたラベル分布を生成することができる。
5つのテキスト分類ベンチマークデータセットの実験により、広く使われているディープラーニング分類モデルに対するLCMの有効性が明らかにされた。
論文 参考訳(メタデータ) (2020-12-09T11:34:35Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
ラベルなしまたは弱いラベル付きデータを用いたトレーニングのための構造化された擬似ラベルを生成するための擬似ラベルの再設計を提案する。
提案手法の有効性を,低データと高データの両方において示す。
論文 参考訳(メタデータ) (2020-10-19T17:59:30Z) - MixText: Linguistically-Informed Interpolation of Hidden Space for
Semi-Supervised Text Classification [68.15015032551214]
MixTextはテキスト分類のための半教師付き学習手法である。
TMixは、隠れた空間でテキストを補間することで、大量の拡張トレーニングサンプルを生成する。
我々は、ラベルなしデータの低エントロピーラベルを推測するために、最近のデータ拡張の進歩を活用している。
論文 参考訳(メタデータ) (2020-04-25T21:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。