Robust Augmentation for Multivariate Time Series Classification
- URL: http://arxiv.org/abs/2201.11739v1
- Date: Thu, 27 Jan 2022 18:57:49 GMT
- Title: Robust Augmentation for Multivariate Time Series Classification
- Authors: Hong Yang, Travis Desell
- Abstract summary: We show that the simple methods of cutout, cutmix, mixup, and window warp improve the robustness and overall performance.
We show that the InceptionTime network with augmentation improves accuracy by 1% to 45% in 18 different datasets.
- Score: 20.38907456958682
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks are capable of learning powerful representations of data, but
they are susceptible to overfitting due to the number of parameters. This is
particularly challenging in the domain of time series classification, where
datasets may contain fewer than 100 training examples. In this paper, we show
that the simple methods of cutout, cutmix, mixup, and window warp improve the
robustness and overall performance in a statistically significant way for
convolutional, recurrent, and self-attention based architectures for time
series classification. We evaluate these methods on 26 datasets from the
University of East Anglia Multivariate Time Series Classification (UEA MTSC)
archive and analyze how these methods perform on different types of time series
data.. We show that the InceptionTime network with augmentation improves
accuracy by 1% to 45% in 18 different datasets compared to without
augmentation. We also show that augmentation improves accuracy for recurrent
and self attention based architectures.
Related papers
- Time Series Representation Models [2.724184832774005]
Time series analysis remains a major challenge due to its sparse characteristics, high dimensionality, and inconsistent data quality.
Recent advancements in transformer-based techniques have enhanced capabilities in forecasting and imputation.
We propose a new architectural concept for time series analysis based on introspection.
arXiv Detail & Related papers (2024-05-28T13:25:31Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Parametric Augmentation for Time Series Contrastive Learning [33.47157775532995]
We create positive examples that assist the model in learning robust and discriminative representations.
Usually, preset human intuition directs the selection of relevant data augmentations.
We propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning.
arXiv Detail & Related papers (2024-02-16T03:51:14Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
We propose MADS, a novel auto-decoding framework for time series imputation, built upon implicit neural representations.
We evaluate our model on two real-world datasets, and show that it outperforms state-of-the-art methods for time series imputation.
arXiv Detail & Related papers (2023-07-03T09:08:47Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
We study time-series classification (TSC), a fundamental task of time-series data mining.
We propose Similarity-Aware Time-Series Classification (SimTSC), a framework that models similarity information with graph neural networks (GNNs)
arXiv Detail & Related papers (2022-01-05T02:14:57Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - An Empirical Survey of Data Augmentation for Time Series Classification
with Neural Networks [17.20906062729132]
We survey data augmentation techniques for time series and their application to time series classification with neural networks.
We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods.
We empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks.
arXiv Detail & Related papers (2020-07-31T10:33:54Z) - Interpretable Time Series Classification using Linear Models and
Multi-resolution Multi-domain Symbolic Representations [6.6147550436077776]
We propose new time series classification algorithms to address gaps in current approaches.
Our approach is based on symbolic representations of time series, efficient sequence mining algorithms and linear classification models.
Our models are as accurate as deep learning models but are more efficient regarding running time and memory, can work with variable-length time series and can be interpreted by highlighting the discriminative symbolic features on the original time series.
arXiv Detail & Related papers (2020-05-31T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.