An Empirical Survey of Data Augmentation for Time Series Classification
with Neural Networks
- URL: http://arxiv.org/abs/2007.15951v4
- Date: Fri, 2 Jul 2021 09:15:08 GMT
- Title: An Empirical Survey of Data Augmentation for Time Series Classification
with Neural Networks
- Authors: Brian Kenji Iwana, Seiichi Uchida
- Abstract summary: We survey data augmentation techniques for time series and their application to time series classification with neural networks.
We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods.
We empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks.
- Score: 17.20906062729132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent times, deep artificial neural networks have achieved many successes
in pattern recognition. Part of this success can be attributed to the reliance
on big data to increase generalization. However, in the field of time series
recognition, many datasets are often very small. One method of addressing this
problem is through the use of data augmentation. In this paper, we survey data
augmentation techniques for time series and their application to time series
classification with neural networks. We propose a taxonomy and outline the four
families in time series data augmentation, including transformation-based
methods, pattern mixing, generative models, and decomposition methods.
Furthermore, we empirically evaluate 12 time series data augmentation methods
on 128 time series classification datasets with six different types of neural
networks. Through the results, we are able to analyze the characteristics,
advantages and disadvantages, and recommendations of each data augmentation
method. This survey aims to help in the selection of time series data
augmentation for neural network applications.
Related papers
- A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection [98.41798478488101]
Time series analytics is crucial to unlocking the wealth of information implicit in available data.
Recent advancements in graph neural networks (GNNs) have led to a surge in GNN-based approaches for time series analysis.
This survey brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
arXiv Detail & Related papers (2023-07-07T08:05:03Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Robust Augmentation for Multivariate Time Series Classification [20.38907456958682]
We show that the simple methods of cutout, cutmix, mixup, and window warp improve the robustness and overall performance.
We show that the InceptionTime network with augmentation improves accuracy by 1% to 45% in 18 different datasets.
arXiv Detail & Related papers (2022-01-27T18:57:49Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Improving Neural Networks for Time Series Forecasting using Data
Augmentation and AutoML [0.0]
This paper presents an easy to implement data augmentation method to significantly improve the performance of neural networks.
It shows that data augmentation, when paired Automated Machine Learning techniques such as Neural Architecture Search, can help to find the best neural architecture for a given time series.
arXiv Detail & Related papers (2021-03-02T19:20:49Z) - DTW-Merge: A Novel Data Augmentation Technique for Time Series
Classification [6.091096843566857]
This paper proposes a novel data augmentation method for time series based on Dynamic Time Warping.
Exploiting the proposed approach with recently-introduced ResNet reveals the improvement of results on the 2018 UCR Time Series Classification Archive.
arXiv Detail & Related papers (2021-03-01T16:40:47Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Time Series Data Augmentation for Neural Networks by Time Warping with a
Discriminative Teacher [17.20906062729132]
We propose a novel time series data augmentation called guided warping.
guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW.
We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN)
arXiv Detail & Related papers (2020-04-19T06:33:44Z) - Time Series Data Augmentation for Deep Learning: A Survey [35.2161833151567]
We systematically review different data augmentation methods for time series data.
We empirically compare different data augmentation methods for different tasks including time series classification, anomaly detection, and forecasting.
arXiv Detail & Related papers (2020-02-27T23:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.