論文の概要: Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model
- arxiv url: http://arxiv.org/abs/2201.11760v1
- Date: Thu, 27 Jan 2022 19:02:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 13:18:26.665129
- Title: Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model
- Title(参考訳): 拡散確率モデルによる網膜OCTの非教師的評価
- Authors: Dewei Hu, Yuankai K. Tao and Ipek Oguz
- Abstract要約: 本稿では,信号の代わりにノイズから学習するための拡散確率モデルを提案する。
本手法は,簡単な作業パイプラインと少量のトレーニングデータを用いて,画像品質を著しく向上させることができる。
- 参考スコア(独自算出の注目度): 0.2578242050187029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical coherence tomography (OCT) is a prevalent non-invasive imaging method
which provides high resolution volumetric visualization of retina. However, its
inherent defect, the speckle noise, can seriously deteriorate the tissue
visibility in OCT. Deep learning based approaches have been widely used for
image restoration, but most of these require a noise-free reference image for
supervision. In this study, we present a diffusion probabilistic model that is
fully unsupervised to learn from noise instead of signal. A diffusion process
is defined by adding a sequence of Gaussian noise to self-fused OCT b-scans.
Then the reverse process of diffusion, modeled by a Markov chain, provides an
adjustable level of denoising. Our experiment results demonstrate that our
method can significantly improve the image quality with a simple working
pipeline and a small amount of training data.
- Abstract(参考訳): 光コヒーレンストモグラフィ(OCT)は、網膜の高解像度容積可視化を提供する非侵襲イメージング法である。
しかし、その固有の欠陥であるスペックルノイズは、OCTの組織視認性を著しく悪化させる可能性がある。
深層学習に基づくアプローチは画像復元に広く用いられているが、これらの多くは監視のためにノイズのない参照画像を必要とする。
本研究では,信号の代わりに雑音から学習するために完全に教師なしの拡散確率モデルを提案する。
拡散過程は、自己融合型OCTbスキャンにガウス雑音列を付加することによって定義される。
次に、マルコフ連鎖によってモデル化された拡散の逆過程は、調整可能な denoising のレベルを提供する。
実験の結果, 簡単なパイプラインと少量のトレーニングデータを用いて, 画像品質を著しく向上させることができることがわかった。
関連論文リスト
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
拡散モデルに基づく新しい教師なし異常検出フレームワークを提案する。
提案手法は, 合成ノイズ関数と多段拡散過程を組み込む。
提案手法は頸動脈US,脳MRI,肝CTを用いて検討した。
論文 参考訳(メタデータ) (2024-11-06T15:43:51Z) - Ultrasound Imaging based on the Variance of a Diffusion Restoration Model [7.360352432782388]
本稿では, 線形直列モデルと学習に基づく先行モデルを組み合わせたハイブリッド再構成手法を提案する。
我々は,高品質な画像再構成を実現するための分散イメージング手法の有効性を実証し,合成,in-vitro,in-vivoデータの実験を行った。
論文 参考訳(メタデータ) (2024-03-22T16:10:38Z) - Deep Ultrasound Denoising Using Diffusion Probabilistic Models [5.828784149537374]
従来のデノナイジング法は、しばしばスペックルを除去するが、これは放射線科医や定量的な超音波検査にも有用である。
本稿では,近年のDenoising Diffusion Probabilistic Models (DDPM) に基づく手法を提案する。
スペックルテクスチャを保ちながらノイズを除去し、画像品質を反復的に向上させる。
論文 参考訳(メタデータ) (2023-06-12T21:53:32Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
本稿では,スコアベース逆拡散サンプリングに基づく新しい復調法を提案する。
当ネットワークは, 人工膝関節のみを訓練し, 生体内MRIデータにも優れていた。
論文 参考訳(メタデータ) (2022-03-23T10:35:06Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
深層学習技術は低線量CT(LDCT) denoisingの主流の方法として現れている。
そこで本研究では,CT画像の近傍類似性を利用した新しい畳み込みモジュールを提案する。
次に,CTノイズの非定常性の問題に向けて移動し,LDCT復調のための新しいノイズ認識平均二乗誤差損失を導入した。
論文 参考訳(メタデータ) (2020-11-11T10:44:52Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。