Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks
- URL: http://arxiv.org/abs/2201.11799v2
- Date: Mon, 17 Apr 2023 19:43:34 GMT
- Title: Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks
- Authors: Boning Li, Gunjan Verma, Santiago Segarra
- Abstract summary: We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
- Score: 27.600081147252155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel graph-based trainable framework to maximize the weighted
sum energy efficiency (WSEE) for power allocation in wireless communication
networks. To address the non-convex nature of the problem, the proposed method
consists of modular structures inspired by a classical iterative suboptimal
approach and enhanced with learnable components. More precisely, we propose a
deep unfolding of the successive concave approximation (SCA) method. In our
unfolded SCA (USCA) framework, the originally preset parameters are now
learnable via graph convolutional neural networks (GCNs) that directly exploit
multi-user channel state information as the underlying graph adjacency matrix.
We show the permutation equivariance of the proposed architecture, which is a
desirable property for models applied to wireless network data. The USCA
framework is trained through a stochastic gradient descent approach using a
progressive training strategy. The unsupervised loss is carefully devised to
feature the monotonic property of the objective under maximum power
constraints. Comprehensive numerical results demonstrate its generalizability
across different network topologies of varying size, density, and channel
distribution. Thorough comparisons illustrate the improved performance and
robustness of USCA over state-of-the-art benchmarks.
Related papers
- GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications.
We base our architecture on a novel neural network layer developed in this work, the graph feedforward network.
We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations.
arXiv Detail & Related papers (2024-06-05T18:31:37Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
We propose a novel graph autoencoder architecture designed to extract powerful and robust node embeddings.
We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs.
Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
We propose an edge-graph-neural-network (Edge-GNN) to learn the cooperative beamforming on the graph edges.
The proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-23T02:05:06Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Solving AC Power Flow with Graph Neural Networks under Realistic
Constraints [3.114162328765758]
We propose a graph neural network architecture to solve the AC power flow problem under realistic constraints.
In our approach, we demonstrate the development of a framework that uses graph neural networks to learn the physical constraints of the power flow.
arXiv Detail & Related papers (2022-04-14T14:49:34Z) - Contrastive Adaptive Propagation Graph Neural Networks for Efficient
Graph Learning [65.08818785032719]
Graph Networks (GNNs) have achieved great success in processing graph data by extracting and propagating structure-aware features.
Recently the field has advanced from local propagation schemes that focus on local neighbors towards extended propagation schemes that can directly deal with extended neighbors consisting of both local and high-order neighbors.
Despite the impressive performance, existing approaches are still insufficient to build an efficient and learnable extended propagation scheme that can adaptively adjust the influence of local and high-order neighbors.
arXiv Detail & Related papers (2021-12-02T10:35:33Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.