Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV
- URL: http://arxiv.org/abs/2201.11815v1
- Date: Thu, 27 Jan 2022 21:38:53 GMT
- Title: Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV
- Authors: Katarzyna Wo\'znica, Mateusz Grzyb, Zuzanna Trafas and Przemys{\l}aw
Biecek
- Abstract summary: This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
- Score: 4.370097023410272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For many machine learning models, a choice of hyperparameters is a crucial
step towards achieving high performance. Prevalent meta-learning approaches
focus on obtaining good hyperparameters configurations with a limited
computational budget for a completely new task based on the results obtained
from the prior tasks. This paper proposes a new formulation of the tuning
problem, called consolidated learning, more suited to practical challenges
faced by model developers, in which a large number of predictive models are
created on similar data sets. In such settings, we are interested in the total
optimization time rather than tuning for a single task. We show that a
carefully selected static portfolio of hyperparameters yields good results for
anytime optimization, maintaining ease of use and implementation. Moreover, we
point out how to construct such a portfolio for specific domains. The
improvement in the optimization is possible due to more efficient transfer of
hyperparameter configurations between similar tasks. We demonstrate the
effectiveness of this approach through an empirical study for XGBoost algorithm
and the collection of predictive tasks extracted from the MIMIC-IV medical
database; however, consolidated learning is applicable in many others fields.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
We propose using multi-objective Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) in the first application to the very challenging domain of tabular data.
We show that models optimized solely for accuracy with NAS often fail to inherently address fairness concerns.
We produce architectures that consistently dominate state-of-the-art bias mitigation methods either in fairness, accuracy or both.
arXiv Detail & Related papers (2023-10-18T17:56:24Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
This paper proposes an agent-based collaborative technique for finding near-optimal values for any arbitrary set of hyper- parameters in a machine learning model.
The behavior of the presented model, specifically against the changes in its design parameters, is investigated in both machine learning and global function optimization applications.
arXiv Detail & Related papers (2023-03-03T21:10:17Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
In reinforcement learning (RL), the information content of data gathered by the learning agent is dependent on the setting of many hyper- parameters.
In this work, a novel approach for autonomous hyper- parameter setting using Bayesian optimization is proposed.
Experiments reveal promising results compared to other manual tweaking and optimization-based approaches.
arXiv Detail & Related papers (2021-12-15T13:10:44Z) - Improving Hyperparameter Optimization by Planning Ahead [3.8673630752805432]
We propose a novel transfer learning approach, defined within the context of model-based reinforcement learning.
We propose a new variant of model predictive control which employs a simple look-ahead strategy as a policy.
Our experiments on three meta-datasets comparing to state-of-the-art HPO algorithms show that the proposed method can outperform all baselines.
arXiv Detail & Related papers (2021-10-15T11:46:14Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.