Bayesian Optimization for Selecting Efficient Machine Learning Models
- URL: http://arxiv.org/abs/2008.00386v1
- Date: Sun, 2 Aug 2020 02:56:30 GMT
- Title: Bayesian Optimization for Selecting Efficient Machine Learning Models
- Authors: Lidan Wang, Franck Dernoncourt, Trung Bui
- Abstract summary: We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
- Score: 53.202224677485525
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The performance of many machine learning models depends on their
hyper-parameter settings. Bayesian Optimization has become a successful tool
for hyper-parameter optimization of machine learning algorithms, which aims to
identify optimal hyper-parameters during an iterative sequential process.
However, most of the Bayesian Optimization algorithms are designed to select
models for effectiveness only and ignore the important issue of model training
efficiency. Given that both model effectiveness and training time are important
for real-world applications, models selected for effectiveness may not meet the
strict training time requirements necessary to deploy in a production
environment. In this work, we present a unified Bayesian Optimization framework
for jointly optimizing models for both prediction effectiveness and training
efficiency. We propose an objective that captures the tradeoff between these
two metrics and demonstrate how we can jointly optimize them in a principled
Bayesian Optimization framework. Experiments on model selection for
recommendation tasks indicate models selected this way significantly improves
model training efficiency while maintaining strong effectiveness as compared to
state-of-the-art Bayesian Optimization algorithms.
Related papers
- Model Fusion through Bayesian Optimization in Language Model Fine-Tuning [16.86812534268461]
Fine-tuning pre-trained models for downstream tasks is a widely adopted technique known for its adaptability and reliability across various domains.
We introduce a novel model fusion technique that optimize both the desired metric and loss through multi-objective Bayesian optimization.
Experiments across various downstream tasks show considerable performance improvements using our Bayesian optimization-guided method.
arXiv Detail & Related papers (2024-11-11T04:36:58Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - A Survey on Multi-Objective based Parameter Optimization for Deep
Learning [1.3223682837381137]
We focus on exploring the effectiveness of multi-objective optimization strategies for parameter optimization in conjunction with deep neural networks.
The two methods are combined to provide valuable insights into the generation of predictions and analysis in multiple applications.
arXiv Detail & Related papers (2023-05-17T07:48:54Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Sample-Efficient Optimization in the Latent Space of Deep Generative
Models via Weighted Retraining [1.5293427903448025]
We introduce an improved method for efficient black-box optimization, which performs the optimization in the low-dimensional, continuous latent manifold learned by a deep generative model.
We achieve this by periodically retraining the generative model on the data points queried along the optimization trajectory, as well as weighting those data points according to their objective function value.
This weighted retraining can be easily implemented on top of existing methods, and is empirically shown to significantly improve their efficiency and performance on synthetic and real-world optimization problems.
arXiv Detail & Related papers (2020-06-16T14:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.