Chain of Thought Prompting Elicits Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2201.11903v1
- Date: Fri, 28 Jan 2022 02:33:07 GMT
- Title: Chain of Thought Prompting Elicits Reasoning in Large Language Models
- Authors: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc
Le, Denny Zhou
- Abstract summary: This paper explores the ability of language models to generate a coherent chain of thought.
Experiments show that inducing a chain of thought via prompting can enable sufficiently large language models to better perform reasoning tasks.
- Score: 56.811278668446825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although scaling up language model size has reliably improved performance on
a range of NLP tasks, even the largest models currently struggle with certain
reasoning tasks such as math word problems, symbolic manipulation, and
commonsense reasoning. This paper explores the ability of language models to
generate a coherent chain of thought -- a series of short sentences that mimic
the reasoning process a person might have when responding to a question.
Experiments show that inducing a chain of thought via prompting can enable
sufficiently large language models to better perform reasoning tasks that
otherwise have flat scaling curves.
Related papers
- Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic [19.476840373850653]
Large language models show hallucinations as their reasoning procedures are unconstrained by logical principles.
We propose LoT (Logical Thoughts), a self-improvement prompting framework that leverages principles rooted in symbolic logic.
Experimental evaluations conducted on language tasks in diverse domains, including arithmetic, commonsense, symbolic, causal inference, and social problems, demonstrate the efficacy of enhanced reasoning by logic.
arXiv Detail & Related papers (2023-09-23T11:21:12Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z) - ALERT: Adapting Language Models to Reasoning Tasks [43.8679673685468]
ALERT is a benchmark and suite of analyses for assessing language models' reasoning ability.
ALERT provides a test bed to asses any language model on fine-grained reasoning skills.
We find that language models learn more reasoning skills during finetuning stage compared to pretraining state.
arXiv Detail & Related papers (2022-12-16T05:15:41Z) - Learning to Reason With Relational Abstractions [65.89553417442049]
We study how to build stronger reasoning capability in language models using the idea of relational abstractions.
We find that models that are supplied with such sequences as prompts can solve tasks with a significantly higher accuracy.
arXiv Detail & Related papers (2022-10-06T00:27:50Z) - Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango [11.344587937052697]
This work initiates the preliminary steps towards a deeper understanding of reasoning mechanisms in large language models.
Our work centers around querying the model while controlling for all but one of the components in a prompt: symbols, patterns, and text.
We posit that text imbues patterns with commonsense knowledge and meaning.
arXiv Detail & Related papers (2022-09-16T02:54:00Z) - Prompt Programming for Large Language Models: Beyond the Few-Shot
Paradigm [0.0]
We discuss methods of prompt programming, emphasizing the usefulness of considering prompts through the lens of natural language.
We introduce the idea of a metaprompt that seeds the model to generate its own natural language prompts for a range of tasks.
arXiv Detail & Related papers (2021-02-15T05:27:55Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns.
Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated.
arXiv Detail & Related papers (2020-02-09T19:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.