Enhancing Chain of Thought Prompting in Large Language Models via Reasoning Patterns
- URL: http://arxiv.org/abs/2404.14812v2
- Date: Thu, 13 Mar 2025 03:03:57 GMT
- Title: Enhancing Chain of Thought Prompting in Large Language Models via Reasoning Patterns
- Authors: Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, Jinqiao Wang,
- Abstract summary: Chain of Thought (CoT) prompting can encourage language models to engage in logical reasoning.<n>We propose leveraging reasoning patterns to enhance CoT prompting effectiveness.
- Score: 26.641713417293538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain of Thought (CoT) prompting can encourage language models to engage in multi-step logical reasoning. The quality of the provided demonstrations significantly influences the success of downstream inference tasks. Current unsupervised CoT methods primarily select examples based on the semantics of the questions, which can introduce noise and lack interpretability. In this paper, we propose leveraging reasoning patterns to enhance CoT prompting effectiveness. Reasoning patterns represent the process by which language models arrive at their final results. By utilizing prior knowledge and prompt-based methods from large models, we first construct task-specific pattern sets. We then select diverse demonstrations based on different reasoning patterns. This approach not only mitigates the impact of noise but also provides explicit interpretability to help us understand the mechanisms of CoT. Extensive experiments demonstrate that our method is more robust and consistently leads to improvements across various reasoning tasks.
Related papers
- Self-Harmonized Chain of Thought [8.540320749424172]
Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps.
ECHO demonstrates the best overall performance across three reasoning domains.
arXiv Detail & Related papers (2024-09-06T06:57:04Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Chain of Thoughtlessness? An Analysis of CoT in Planning [17.329365493094542]
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution.
This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain.
We find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class.
arXiv Detail & Related papers (2024-05-08T02:48:28Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z) - Synthetic Prompting: Generating Chain-of-Thought Demonstrations for
Large Language Models [121.54462976635743]
Large language models can perform various reasoning tasks by using chain-of-thought prompting, which guides them to find answers through step-by-step demonstrations.
We introduce Synthetic prompting, a method that leverages a few handcrafted examples to prompt the model to generate more examples by itself.
We evaluate our method on numerical, symbolic, and algorithmic reasoning tasks, and show that it outperforms existing prompting techniques.
arXiv Detail & Related papers (2023-02-01T17:33:12Z) - Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango [11.344587937052697]
This work initiates the preliminary steps towards a deeper understanding of reasoning mechanisms in large language models.
Our work centers around querying the model while controlling for all but one of the components in a prompt: symbols, patterns, and text.
We posit that text imbues patterns with commonsense knowledge and meaning.
arXiv Detail & Related papers (2022-09-16T02:54:00Z) - Chain of Thought Prompting Elicits Reasoning in Large Language Models [56.811278668446825]
This paper explores the ability of language models to generate a coherent chain of thought.
Experiments show that inducing a chain of thought via prompting can enable sufficiently large language models to better perform reasoning tasks.
arXiv Detail & Related papers (2022-01-28T02:33:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.