Quantum teleportation using Ising anyons
- URL: http://arxiv.org/abs/2201.11923v3
- Date: Sun, 17 Jul 2022 16:00:09 GMT
- Title: Quantum teleportation using Ising anyons
- Authors: Cheng-Qian Xu and D. L. Zhou
- Abstract summary: We propose a general topologically protected protocol for quantum teleportation based on the Ising anyon model.
Our protocol naturally generalizes quantum state teleportation from systems of locally distinguishable particles to systems of Ising anyons.
- Score: 11.59961756146332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anyons have been extensively investigated as information carriers in
topological quantum computation. However, how to characterize the information
flow in quantum networks composed of anyons is less understood, which motivates
us to study quantum communication protocols in anyonic systems. Here we propose
a general topologically protected protocol for quantum teleportation based on
the Ising anyon model and prove that with our protocol an unknown anyonic state
of any number of Ising anyons can be teleported from Alice to Bob. Our protocol
naturally generalizes quantum state teleportation from systems of locally
distinguishable particles to systems of Ising anyons, which may promote our
understandings of anyonic quantum entanglement as a quantum resource. In
addition, our protocol is expected to be realized with the Majorana zero modes,
one of the possible physical realizations for the Ising anyon in experiments.
Related papers
- Macroscopic quantum teleportation with ensembles of qubits [10.017471827779337]
We develop methods for performing quantum teleportation of the total spin variables of an unknown state.
We introduce two protocols and show that, on average, the teleportation succeeds in teleporting the spin variables of a spin coherent state.
A potential physical implementation for the scheme is with atomic ensembles and quantum nondemolition measurements performed with light.
arXiv Detail & Related papers (2024-11-05T10:12:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Mimicking states with limited resources: passing quantum quiz via global
control [0.0]
We propose, analyze, and optimize a protocol which allows fast simulation of properties of unknown quantum states.
Our protocol, having common features with quantum identification and shortcuts to adiabaticity, permits avoiding adiabaticity catastrophe.
arXiv Detail & Related papers (2022-08-17T23:18:02Z) - Quantum teleportation of quantum causal structures [0.0]
We develop quantum teleportation of arbitrary quantum causal structures.
The central idea is to just teleport the inputs to and outputs from the operations of agents.
We prove that our partially post-selected teleportation protocol is compatible with all quantum causal structures.
arXiv Detail & Related papers (2022-03-01T13:29:09Z) - LQP: The Dynamic Logic of Quantum Information [77.34726150561087]
This paper introduces a dynamic logic formalism for reasoning about information flow in composite quantum systems.
We present a finitary syntax, a relational semantics and a sound proof system for this logic.
As applications, we use our system to give formal correctness for the Teleportation protocol and for a standard Quantum Secret Sharing protocol.
arXiv Detail & Related papers (2021-10-04T12:20:23Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum teleportation is a reversal of quantum measurement [0.0]
We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and reversing operation.
Our framework makes it possible to find an optimal protocol for quantum teleportation enabling a faithful transfer of unknown quantum states.
arXiv Detail & Related papers (2021-04-25T15:03:08Z) - Catalytic quantum teleportation and beyond [0.0]
We develop a new teleportation protocol based upon the idea of using ancillary entanglement catalytically.
We show that catalytic entanglement allows for a noiseless quantum channel to be simulated with a quality that could never be achieved.
arXiv Detail & Related papers (2021-02-23T18:25:17Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.