Teleporting quantum information encoded in fermionic modes
- URL: http://arxiv.org/abs/2002.08201v2
- Date: Mon, 18 May 2020 19:08:46 GMT
- Title: Teleporting quantum information encoded in fermionic modes
- Authors: Tiago Debarba, Fernando Iemini, Geza Giedke, Nicolai Friis
- Abstract summary: We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum teleportation is considered a basic primitive in many quantum
information processing tasks and has been experimentally confirmed in various
photonic and matter-based setups. Here, we consider teleportation of quantum
information encoded in modes of a fermionic field. In fermionic systems,
superselection rules lead to a more differentiated picture of entanglement and
teleportation. In particular, one is forced to distinguish between single-mode
entanglement swapping, and qubit teleportation with or without authentication
via Bell inequality violation, as we discuss here in detail. We focus on
systems subject to parity superselection where the particle number is not
fixed, and contrast them with systems constrained by particle number
superselection which are relevant for possible practical implementations.
Finally, we analyze the consequences for the operational interpretation of
fermionic mode entanglement and examine the usefulness of so-called mixed
maximally entangled states for teleportation.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum teleportation between a continuous-variable optical qumode and a discrete-variable solid-state qubit [12.102621653528027]
We propose a scheme to teleport a continuous variable optical qubit, encoded in an optical qumode, onto a discrete variable solid-state qubit, associated with a single nitrogen-vacancy center spin in diamond, via a hybrid entanglement.
We find that the average teleportation fidelity can still exceed the classical limit, enabling substantial teleportation distances under realistic experimental conditions.
arXiv Detail & Related papers (2024-06-27T09:20:09Z) - Environment-induced Transitions in Many-body Quantum Teleportation [19.646332825082478]
We study many-body quantum teleportation in the presence of environments.
In the quantum regime, teleportation can outperform its classical counterparts, while in the classical regime, it can be replaced by a classical channel.
arXiv Detail & Related papers (2024-06-04T12:51:23Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum teleportation of a genuine vacuum-one-photon qubit generated via
a quantum dot source [0.0]
We exploit coherent control of a resonantly excited semiconductor quantum dot in a micro-cavity to teleport genuine vacuum-one photon states.
Our results may disclose new potentialities of quantum dot single-photon sources for quantum information applications.
arXiv Detail & Related papers (2023-10-31T14:59:39Z) - Remote sensing and faithful quantum teleportation through non-localized
qubits [0.0]
In this paper, we address the idea of remote sensing in a teleportation scenario with topological qubits more robust against noise.
We show that how this nonlocal property, helps us to achieve near-perfect quantum teleportation even with mixed quantum states.
arXiv Detail & Related papers (2021-09-11T13:23:30Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Many-body quantum teleportation via operator spreading in the
traversable wormhole protocol [1.1198195005311917]
Recent advances have uncovered an intrinsically many-body generalization of quantum teleportation, with an elegant and surprising connection to gravity.
Here, we propose and analyze a new mechanism for many-body quantum teleportation -- dubbed peaked-size teleportation.
We demonstrate the ubiquity of peaked-size teleportation, both analytically and numerically, across a diverse landscape of physical systems.
arXiv Detail & Related papers (2021-01-29T19:00:01Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.