Recommender System Expedited Quantum Control Optimization
- URL: http://arxiv.org/abs/2201.12550v2
- Date: Tue, 1 Feb 2022 08:10:25 GMT
- Title: Recommender System Expedited Quantum Control Optimization
- Authors: Priya Batra, M. Harshanth Ram, T. S. Mahesh
- Abstract summary: Quantum control optimization algorithms are routinely used to generate optimal quantum gates or efficient quantum state transfers.
There are two main challenges in designing efficient optimization algorithms, namely overcoming the sensitivity to local optima and improving the computational speed.
Here, we propose and demonstrate the use of a machine learning method, specifically the recommender system (RS), to deal with the latter challenge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum control optimization algorithms are routinely used to generate
optimal quantum gates or efficient quantum state transfers. However, there are
two main challenges in designing efficient optimization algorithms, namely
overcoming the sensitivity to local optima and improving the computational
speed. The former challenge can be dealt with by designing hybrid algorithms,
such as a combination of gradient and simulated annealing methods. Here, we
propose and demonstrate the use of a machine learning method, specifically the
recommender system (RS), to deal with the latter challenge of enhancing
computational efficiency. We first describe ways to set up a rating matrix
involving gradients or gate fidelities. We then establish that RS can rapidly
and accurately predict elements of a sparse rating matrix. Using this approach,
we expedite a gradient ascent based quantum control optimization, namely GRAPE
and demonstrate the faster performance for up to 8 qubits. Finally, we describe
and implement the enhancement of the computational speed of a hybrid algorithm,
namely SAGRAPE.
Related papers
- Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
The said algorithm runs on classical hardware and finds shallow, accurate quantum circuits.
All circuits achieve high state fidelities within reasonable CPU time and modest memory requirements.
arXiv Detail & Related papers (2024-08-22T17:48:53Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Gradient-Free optimization algorithm for single-qubit quantum classifier [0.3314882635954752]
A gradient-free optimization algorithm is proposed to overcome the effects of barren plateau caused by quantum devices.
The proposed algorithm is demonstrated for a classification task and is compared with that using Adam.
The proposed gradient-free optimization algorithm can reach a high accuracy faster than that using Adam.
arXiv Detail & Related papers (2022-05-10T08:45:03Z) - Stochastic optimization algorithms for quantum applications [0.0]
We review the use of first-order, second-order, and quantum natural gradient optimization methods, and propose new algorithms defined in the field of complex numbers.
The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation.
arXiv Detail & Related papers (2022-03-11T16:17:05Z) - Fast optimal structures generator for parameterized quantum circuits [4.655660925754175]
Current structure optimization algorithms optimize the structure of quantum circuit from scratch for each new task of variational quantum algorithms (VQAs)
We propose a rapid structure optimization algorithm for VQAs which automatically determines the number of quantum gates and directly generates the optimal structures for new tasks.
arXiv Detail & Related papers (2022-01-10T12:19:37Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Filtering variational quantum algorithms for combinatorial optimization [0.0]
We introduce the Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution.
We also explore the use of causal cones to reduce the number of qubits required on a quantum computer.
arXiv Detail & Related papers (2021-06-18T11:07:33Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.