論文の概要: SMGRL: Scalable Multi-resolution Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2201.12670v3
- Date: Tue, 15 Aug 2023 18:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 18:11:24.017448
- Title: SMGRL: Scalable Multi-resolution Graph Representation Learning
- Title(参考訳): SMGRL:スケーラブルなマルチ解像度グラフ表現学習
- Authors: Reza Namazi, Elahe Ghalebi, Sinead Williamson, Hamidreza Mahyar
- Abstract要約: グラフ畳み込みネットワーク(GCN)により、トポロジ的に認識されたノードの埋め込みを学習できる。
追加レイヤを追加することなく、ノード間の長距離依存関係をキャプチャすることはできない。
マルチレゾリューションノードの埋め込みを効率的に学習できるスケーラブルなマルチレゾリューショングラフ表現学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.878741798127168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolutional networks (GCNs) allow us to learn topologically-aware
node embeddings, which can be useful for classification or link prediction.
However, they are unable to capture long-range dependencies between nodes
without adding additional layers -- which in turn leads to over-smoothing and
increased time and space complexity. Further, the complex dependencies between
nodes make mini-batching challenging, limiting their applicability to large
graphs. We propose a Scalable Multi-resolution Graph Representation Learning
(SMGRL) framework that enables us to learn multi-resolution node embeddings
efficiently. Our framework is model-agnostic and can be applied to any existing
GCN model. We dramatically reduce training costs by training only on a
reduced-dimension coarsening of the original graph, then exploit
self-similarity to apply the resulting algorithm at multiple resolutions. The
resulting multi-resolution embeddings can be aggregated to yield high-quality
node embeddings that capture both long- and short-range dependencies. Our
experiments show that this leads to improved classification accuracy, without
incurring high computational costs.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、分類やリンク予測に役立つトポロジ的に認識されたノードの埋め込みを学習することができる。
しかし、追加のレイヤを追加することなく、ノード間の長距離依存関係をキャプチャできないため、過剰なスムーシングと時間と空間の複雑さが増大する。
さらに、ノード間の複雑な依存関係は、ミニバッチを難しくし、大きなグラフに適用性を制限する。
マルチレゾリューションノードの埋め込みを効率的に学習できるスケーラブルなマルチレゾリューショングラフ表現学習(SMGRL)フレームワークを提案する。
私たちのフレームワークはモデルに依存しており、既存のgcnモデルに適用できます。
元のグラフの次元の粗さだけをトレーニングすることで、トレーニングコストを劇的に削減し、その結果のアルゴリズムを複数の解像度で適用するために自己相似性を利用する。
結果として得られるマルチレゾリューション組込みは集約され、長距離および短距離の依存関係をキャプチャする高品質なノード組込みが得られる。
実験の結果,高い計算コストを伴わずに分類精度が向上することがわかった。
関連論文リスト
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - AGNN: Alternating Graph-Regularized Neural Networks to Alleviate
Over-Smoothing [29.618952407794776]
グラフ畳み込み層(GCL)とグラフ埋め込み層(GEL)からなる交代グラフ正規化ニューラルネットワーク(AGNN)を提案する。
GELはラプラシアン埋め込み項を含むグラフ正規化最適化から導かれる。
AGNNは、いくつかの多層または多次グラフニューラルネットワークのパフォーマンス比較を含む、多数の実験を通じて評価されている。
論文 参考訳(メタデータ) (2023-04-14T09:20:03Z) - Search to Capture Long-range Dependency with Stacking GNNs for Graph
Classification [41.84399177525008]
浅いGNNは、より深いGNNに直面しているよく知られたオーバースムースな問題のため、より一般的である。
LRGNN(Long-Range Graph Neural Networks)と呼ばれるニューラルアーキテクチャサーチ(NAS)による新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-17T03:40:17Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。