Augmenting Novelty Search with a Surrogate Model to Engineer
Meta-Diversity in Ensembles of Classifiers
- URL: http://arxiv.org/abs/2201.12896v1
- Date: Sun, 30 Jan 2022 19:13:32 GMT
- Title: Augmenting Novelty Search with a Surrogate Model to Engineer
Meta-Diversity in Ensembles of Classifiers
- Authors: Rui P. Cardoso, Emma Hart, David Burth Kurka and Jeremy V. Pitt
- Abstract summary: Using Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing ensembles for classification.
We propose a method to overcome this limitation by using a surrogate model which estimates the behavioural distance between two neural network architectures.
- Score: 5.8497361730688695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using Neuroevolution combined with Novelty Search to promote behavioural
diversity is capable of constructing high-performing ensembles for
classification. However, using gradient descent to train evolved architectures
during the search can be computationally prohibitive. Here we propose a method
to overcome this limitation by using a surrogate model which estimates the
behavioural distance between two neural network architectures required to
calculate the sparseness term in Novelty Search. We demonstrate a speedup of 10
times over previous work and significantly improve on previous reported results
on three benchmark datasets from Computer Vision -- CIFAR-10, CIFAR-100, and
SVHN. This results from the expanded architecture search space facilitated by
using a surrogate. Our method represents an improved paradigm for implementing
horizontal scaling of learning algorithms by making an explicit search for
diversity considerably more tractable for the same bounded resources.
Related papers
- MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
We introduce multi-granularity architecture search (MGAS) to discover both effective and efficient neural networks.
We learn discretization functions specific to each granularity level to adaptively determine the unit remaining ratio according to the evolving architecture.
Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate that MGAS outperforms other state-of-the-art methods in achieving a better trade-off between model performance and model size.
arXiv Detail & Related papers (2023-10-23T16:32:18Z) - Continuous Cartesian Genetic Programming based representation for
Multi-Objective Neural Architecture Search [12.545742558041583]
We propose a novel approach for designing less complex yet highly effective convolutional neural networks (CNNs)
Our approach combines real-based and block-chained CNNs representations based on cartesian genetic programming (CGP) for neural architecture search (NAS)
Two variants are introduced that differ in the granularity of the search space they consider.
arXiv Detail & Related papers (2023-06-05T07:32:47Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - ZARTS: On Zero-order Optimization for Neural Architecture Search [94.41017048659664]
Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency.
This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation.
In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue.
arXiv Detail & Related papers (2021-10-10T09:35:15Z) - One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search
Space Shrinking [97.60915598958968]
We propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges.
For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking.
For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes.
arXiv Detail & Related papers (2021-04-01T16:29:49Z) - Towards Improving the Consistency, Efficiency, and Flexibility of
Differentiable Neural Architecture Search [84.4140192638394]
Most differentiable neural architecture search methods construct a super-net for search and derive a target-net as its sub-graph for evaluation.
In this paper, we introduce EnTranNAS that is composed of Engine-cells and Transit-cells.
Our method also spares much memory and computation cost, which speeds up the search process.
arXiv Detail & Related papers (2021-01-27T12:16:47Z) - Evolving Search Space for Neural Architecture Search [70.71153433676024]
We present a Neural Search-space Evolution (NSE) scheme that amplifies the results from the previous effort by maintaining an optimized search space subset.
We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance.
When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
arXiv Detail & Related papers (2020-11-22T01:11:19Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.