Topology-Preserving Dimensionality Reduction via Interleaving
Optimization
- URL: http://arxiv.org/abs/2201.13012v1
- Date: Mon, 31 Jan 2022 06:11:17 GMT
- Title: Topology-Preserving Dimensionality Reduction via Interleaving
Optimization
- Authors: Bradley J. Nelson and Yuan Luo
- Abstract summary: We show how optimization seeking to minimize the interleaving distance can be incorporated into dimensionality reduction algorithms.
We demonstrate the utility of this framework to data visualization.
- Score: 10.097180927318703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimensionality reduction techniques are powerful tools for data preprocessing
and visualization which typically come with few guarantees concerning the
topological correctness of an embedding. The interleaving distance between the
persistent homology of Vietoris-Rips filtrations can be used to identify a
scale at which topological features such as clusters or holes in an embedding
and original data set are in correspondence. We show how optimization seeking
to minimize the interleaving distance can be incorporated into dimensionality
reduction algorithms, and explicitly demonstrate its use in finding an optimal
linear projection. We demonstrate the utility of this framework to data
visualization.
Related papers
- Dimension reduction via score ratio matching [0.9012198585960441]
We propose a framework, derived from score-matching, to extend gradient-based dimension reduction to problems where gradients are unavailable.
We show that our approach outperforms standard score-matching for problems with low-dimensional structure.
arXiv Detail & Related papers (2024-10-25T22:21:03Z) - Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation.
The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz.
We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
arXiv Detail & Related papers (2024-08-23T15:02:09Z) - A Practical Solver for Scalar Data Topological Simplification [7.079737824450954]
This paper presents a practical approach for the optimization of topological simplification.
We show that our approach leads to improvements over standard topological techniques for removing filament loops.
We also show how our approach can be used to repair genus defects in surface processing.
arXiv Detail & Related papers (2024-07-17T08:25:32Z) - Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
We propose a novel parameterization method dubbed Hierarchical Generative Latent Distillation (H-GLaD)
This method systematically explores hierarchical layers within the generative adversarial networks (GANs)
In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Diffeomorphic interpolation for efficient persistence-based topological optimization [3.7550827441501844]
Topological Data Analysis (TDA) provides a pipeline to extract quantitative topological descriptors from structured objects.
We show that our approach combines efficiently with subsampling techniques, as the diffeomorphism derived from the gradient computed on a subsample can be used to update the coordinates of the full input object.
We also showcase the relevance of our approach for black-box autoencoder (AE) regularization, where we aim at enforcing topological priors on the latent spaces associated to fixed, pre-trained, blackbox AE models.
arXiv Detail & Related papers (2024-05-29T07:00:28Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Graph Vertex Embeddings: Distance, Regularization and Community Detection [0.0]
Graph embeddings have emerged as a powerful tool for representing complex network structures in a low-dimensional space.
We present a family of flexible distance functions that faithfully capture the topological distance between different vertices.
We evaluate the effectiveness of our proposed embedding constructions by performing community detection on a host of benchmark datasets.
arXiv Detail & Related papers (2024-04-09T09:03:53Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
We propose LaptSNE, a new graph-based dimensionality reduction method based on t-SNE.
Specifically, LaptSNE leverages the eigenvalue information of the graph Laplacian to shrink the potential clusters in the low-dimensional embedding.
We show how to calculate the gradient analytically, which may be of broad interest when considering optimization with Laplacian-composited objective.
arXiv Detail & Related papers (2022-07-25T14:10:24Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.