Graph Vertex Embeddings: Distance, Regularization and Community Detection
- URL: http://arxiv.org/abs/2404.10784v1
- Date: Tue, 9 Apr 2024 09:03:53 GMT
- Title: Graph Vertex Embeddings: Distance, Regularization and Community Detection
- Authors: Radosław Nowak, Adam Małkowski, Daniel Cieślak, Piotr Sokół, Paweł Wawrzyński,
- Abstract summary: Graph embeddings have emerged as a powerful tool for representing complex network structures in a low-dimensional space.
We present a family of flexible distance functions that faithfully capture the topological distance between different vertices.
We evaluate the effectiveness of our proposed embedding constructions by performing community detection on a host of benchmark datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph embeddings have emerged as a powerful tool for representing complex network structures in a low-dimensional space, enabling the use of efficient methods that employ the metric structure in the embedding space as a proxy for the topological structure of the data. In this paper, we explore several aspects that affect the quality of a vertex embedding of graph-structured data. To this effect, we first present a family of flexible distance functions that faithfully capture the topological distance between different vertices. Secondly, we analyze vertex embeddings as resulting from a fitted transformation of the distance matrix rather than as a direct result of optimization. Finally, we evaluate the effectiveness of our proposed embedding constructions by performing community detection on a host of benchmark datasets. The reported results are competitive with classical algorithms that operate on the entire graph while benefitting from a substantially reduced computational complexity due to the reduced dimensionality of the representations.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
We propose SLOTAlign, an unsupervised graph alignment framework that jointly performs Structure Learning and Optimal Transport Alignment.
We incorporate multi-view structure learning to enhance graph representation power and reduce the effect of structure and feature inconsistency inherited across graphs.
The proposed SLOTAlign shows superior performance and strongest robustness over seven unsupervised graph alignment methods and five specialized KG alignment methods.
arXiv Detail & Related papers (2023-01-30T08:41:36Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
Current Graph Neural Networks (GNN) architectures rely on two important components: node features embedding through message passing, and aggregation with a specialized form of pooling.
We propose in this work a novel point of view, which places distances to some learnable graph templates at the core of the graph representation.
This distance embedding is constructed thanks to an optimal transport distance: the Fused Gromov-Wasserstein (FGW) distance.
arXiv Detail & Related papers (2022-05-31T12:24:01Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
We introduce the Graph Sylvester Embedding (GSE), an unsupervised graph representation of local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation to capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2022-05-07T04:11:23Z) - Topology-Preserving Dimensionality Reduction via Interleaving
Optimization [10.097180927318703]
We show how optimization seeking to minimize the interleaving distance can be incorporated into dimensionality reduction algorithms.
We demonstrate the utility of this framework to data visualization.
arXiv Detail & Related papers (2022-01-31T06:11:17Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Sparse Partial Least Squares for Coarse Noisy Graph Alignment [10.172041234280865]
Graph signal processing (GSP) provides a powerful framework for analyzing signals arising in a variety of domains.
We propose a novel regularized partial least squares method which both incorporates the observed graph structures and imposes sparsity in order to reflect the underlying block community structure.
arXiv Detail & Related papers (2021-04-06T21:52:15Z) - Topological Regularization for Graph Neural Networks Augmentation [12.190045459064413]
We propose a feature augmentation method for graph nodes based on topological regularization.
We have carried out extensive experiments on a large number of datasets to prove the effectiveness of our model.
arXiv Detail & Related papers (2021-04-03T01:37:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.