SPDY: Accurate Pruning with Speedup Guarantees
- URL: http://arxiv.org/abs/2201.13096v1
- Date: Mon, 31 Jan 2022 10:14:31 GMT
- Title: SPDY: Accurate Pruning with Speedup Guarantees
- Authors: Elias Frantar and Dan Alistarh
- Abstract summary: SPDY is a new compression method which automatically determines layer-wise sparsity targets achieving a desired inference speedup.
We show that SPDY guarantees speedups while recovering higher accuracy relative to existing strategies, both for one-shot and gradual pruning scenarios.
We also extend our approach to the recently-proposed task of pruning with very little data, where we achieve the best known accuracy recovery when pruning to the GPU-supported 2:4 sparsity pattern.
- Score: 29.284147465251685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent focus on the efficiency of deep neural networks (DNNs) has led to
significant work on model compression approaches, of which weight pruning is
one of the most popular. At the same time, there is rapidly-growing
computational support for efficiently executing the unstructured-sparse models
obtained via pruning. Yet, most existing pruning methods minimize just the
number of remaining weights, i.e. the size of the model, rather than optimizing
for inference time. We address this gap by introducing SPDY, a new compression
method which automatically determines layer-wise sparsity targets achieving a
desired inference speedup on a given system, while minimizing accuracy loss.
SPDY is composed of two new techniques: the first is an efficient dynamic
programming algorithm for solving the speedup-constrained layer-wise
compression problem assuming a set of given layer-wise sensitivity scores; the
second is a local search procedure for determining accurate layer-wise
sensitivity scores. Experiments across popular vision and language models show
that SPDY guarantees speedups while recovering higher accuracy relative to
existing strategies, both for one-shot and gradual pruning scenarios, and is
compatible with most existing pruning approaches. We also extend our approach
to the recently-proposed task of pruning with very little data, where we
achieve the best known accuracy recovery when pruning to the GPU-supported 2:4
sparsity pattern.
Related papers
- Joint Pruning and Channel-wise Mixed-Precision Quantization for Efficient Deep Neural Networks [10.229120811024162]
deep neural networks (DNNs) pose significant challenges to their deployment on edge devices.
Common approaches to address this issue are pruning and mixed-precision quantization.
We propose a novel methodology to apply them jointly via a lightweight gradient-based search.
arXiv Detail & Related papers (2024-07-01T08:07:02Z) - DRIVE: Dual Gradient-Based Rapid Iterative Pruning [2.209921757303168]
Modern deep neural networks (DNNs) consist of millions of parameters, necessitating high-performance computing during training and inference.
Traditional pruning methods that are applied post-training focus on streamlining inference, but there are recent efforts to leverage sparsity early on by pruning before training.
We present Dual Gradient-Based Rapid Iterative Pruning (DRIVE), which leverages dense training for initial epochs to counteract the randomness inherent at the inception.
arXiv Detail & Related papers (2024-04-01T20:44:28Z) - Fast as CHITA: Neural Network Pruning with Combinatorial Optimization [9.440450886684603]
We propose a novel optimization-based pruning framework that considers the combined effect of pruning (and updating) multiple weights subject to a sparsity constraint.
Our approach, CHITA, extends the classical Brain Surgeon framework and results in significant improvements in speed, memory, and performance.
arXiv Detail & Related papers (2023-02-28T15:03:18Z) - Pruning Deep Neural Networks from a Sparsity Perspective [34.22967841734504]
Pruning is often achieved by dropping redundant weights, neurons, or layers of a deep network while attempting to retain a comparable test performance.
We propose PQ Index (PQI) to measure the potential compressibility of deep neural networks and use this to develop a Sparsity-informed Adaptive Pruning (SAP) algorithm.
arXiv Detail & Related papers (2023-02-11T04:52:20Z) - Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
Mobile Acceleration [71.80326738527734]
We propose a general, fine-grained structured pruning scheme and corresponding compiler optimizations.
We show that our pruning scheme mapping methods, together with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization framework.
arXiv Detail & Related papers (2021-11-22T23:53:14Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Dynamic Probabilistic Pruning: A general framework for
hardware-constrained pruning at different granularities [80.06422693778141]
We propose a flexible new pruning mechanism that facilitates pruning at different granularities (weights, kernels, filters/feature maps)
We refer to this algorithm as Dynamic Probabilistic Pruning (DPP)
We show that DPP achieves competitive compression rates and classification accuracy when pruning common deep learning models trained on different benchmark datasets for image classification.
arXiv Detail & Related papers (2021-05-26T17:01:52Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.