論文の概要: Accelerating Laue Depth Reconstruction Algorithm with CUDA
- arxiv url: http://arxiv.org/abs/2201.13309v1
- Date: Thu, 20 Jan 2022 18:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-06 11:10:46.586695
- Title: Accelerating Laue Depth Reconstruction Algorithm with CUDA
- Title(参考訳): CUDAを用いたラウ水深推定アルゴリズムの高速化
- Authors: Ke Yue, Schwarz Nicholas, Tischler Jonathan Z
- Abstract要約: Laue diffraction microscopy(英語版)実験では、多色のLaue micro-diffraction(英語版)法を用いて材料の構造を調べる。
記録された画像は、将来のデータ解析のための深度再構成アルゴリズムで処理される。
本稿では,深度再構成問題に対するスケーラブルなGPUプログラムソリューションを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The Laue diffraction microscopy experiment uses the polychromatic Laue
micro-diffraction technique to examine the structure of materials with
sub-micron spatial resolution in all three dimensions. During this experiment,
local crystallographic orientations, orientation gradients and strains are
measured as properties which will be recorded in HDF5 image format. The
recorded images will be processed with a depth reconstruction algorithm for
future data analysis. But the current depth reconstruction algorithm consumes
considerable processing time and might take up to 2 weeks for reconstructing
data collected from one single experiment. To improve the depth reconstruction
computation speed, we propose a scalable GPU program solution on the depth
reconstruction problem in this paper. The test result shows that the running
time would be 10 to 20 times faster than the prior CPU design for various size
of input data.
- Abstract(参考訳): ロー回折顕微鏡実験では、多色ロー微小回折法を用いて3次元のサブミクロン空間分解能を持つ材料の構造を調べる。
この実験では, 局所結晶方位, 配向勾配, ひずみをHDF5画像形式で記録する特性として測定した。
記録された画像は、将来のデータ解析のための深度再構成アルゴリズムで処理される。
しかし、現在の深度再構成アルゴリズムはかなりの処理時間を消費し、単一の実験から収集したデータを再構築するのに最大2週間かかる可能性がある。
本稿では,深度再構成計算の高速化を目的として,深度再構成問題に対するスケーラブルなGPUプログラムソリューションを提案する。
テスト結果から、実行時間は、入力データのさまざまなサイズに対して、以前のCPU設計よりも10倍から20倍高速であることが示された。
関連論文リスト
- EDCSSM: Edge Detection with Convolutional State Space Model [3.649463841174485]
画像のエッジ検出は、コンピュータグラフィックスにおける多くの複雑なタスクの基礎となっている。
多層畳み込みとプールアーキテクチャによる特徴損失のため、学習ベースのエッジ検出モデルは、しばしば厚いエッジを生成する。
本稿では,上記の問題に効果的に対処するエッジ検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T05:13:25Z) - Supersampling of Data from Structured-light Scanner with Deep Learning [1.6385815610837167]
2つのディープラーニングモデルFDSRとDKNは、高解像度のデータを扱うように修正される。
得られた高分解能深度マップは定性的および定量的な測定値を用いて評価される。
論文 参考訳(メタデータ) (2023-11-13T16:04:41Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
本研究では,教師なし深度計算と推定のために,従来不可能であった幾何拡張の幅広い範囲をアンロックする手法を提案する。
これは、出力深さの座標への幾何変換を反転、あるいはアンドウイング(undo''-ing)し、深度マップを元の参照フレームに戻すことで達成される。
論文 参考訳(メタデータ) (2023-10-15T05:15:45Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
本稿では,スパルス・ボクセル・ブロック・グリッドにおける署名付き距離関数(SDF)を直接使用して,距離のない高速かつ正確なシーン再構成を実現することを提案する。
我々の世界規模で疎密で局所的なデータ構造は、表面の空間的空間性を利用して、キャッシュフレンドリーなクエリを可能にし、マルチモーダルデータへの直接拡張を可能にします。
実験により、我々のアプローチはトレーニングでは10倍、レンダリングでは100倍高速であり、最先端のニューラル暗黙法に匹敵する精度を実現していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T16:50:19Z) - Learning an Efficient Multimodal Depth Completion Model [11.740546882538142]
RGB画像ガイドによるスパース深度補完は近年広く注目されているが、まだいくつかの問題に直面している。
提案手法は軽量なアーキテクチャで最先端の手法より優れている。
また、MIPI2022 RGB+TOFディープ・コンプリート・チャレンジでも優勝している。
論文 参考訳(メタデータ) (2022-08-23T07:03:14Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRMは、6Dポーズ改善のための新しいリカレントネットワークアーキテクチャである。
アーキテクチャにはLSTMユニットが組み込まれ、各改善ステップを通じて情報を伝達する。
DeepRMは、2つの広く受け入れられている課題データセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-28T16:18:08Z) - Differentiable Diffusion for Dense Depth Estimation from Multi-view
Images [31.941861222005603]
深度マップへの拡散がRGB監督からの多視点再投射誤差を最小限に抑えるように、細かな点集合を最適化することにより、深度を推定する手法を提案する。
また,複雑なシーン再構成に必要な50k以上のポイントを同時に最適化できる効率的な最適化ルーチンを開発した。
論文 参考訳(メタデータ) (2021-06-16T16:17:34Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
2次元構造移動(SfM)は3次元再構成と視覚SLAMの基礎となる。
古典パイプラインの適切性を活用することで,深部2視点sfmの問題を再検討することを提案する。
本手法は,1)2つのフレーム間の密対応を予測する光フロー推定ネットワーク,2)2次元光フロー対応から相対カメラポーズを計算する正規化ポーズ推定モジュール,3)エピポーラ幾何を利用して探索空間を縮小し,密対応を洗練し,相対深度マップを推定するスケール不変深さ推定ネットワークからなる。
論文 参考訳(メタデータ) (2021-04-01T15:31:20Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
深度補正のための新しい大域的幾何制約を提案する。
低次元部分空間上によく配置される深さ写像を仮定することにより、高密度深度写像は全解像度の主深度基底の重み付け和で近似することができる。
論文 参考訳(メタデータ) (2020-12-02T11:57:37Z) - Noise2Filter: fast, self-supervised learning and real-time
reconstruction for 3D Computed Tomography [0.0]
X線ビームラインでは、物体の内部の3Dトモグラフィー画像の達成可能な時間分解能が1秒に短縮された。
本研究では,実測データのみを用いて学習可能なフィルタ手法であるNoss2Filterを提案する。
トレーニングデータの追加によるトレーニングと比較して,精度の低下は限定的であり,標準フィルタ法と比較して精度が向上した。
論文 参考訳(メタデータ) (2020-07-03T12:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。