論文の概要: Fractional Motion Estimation for Point Cloud Compression
- arxiv url: http://arxiv.org/abs/2202.00172v1
- Date: Tue, 1 Feb 2022 01:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 00:54:43.237203
- Title: Fractional Motion Estimation for Point Cloud Compression
- Title(参考訳): 点雲圧縮のためのフラクショナルモーション推定
- Authors: Haoran Hong, Eduardo Pavez, Antonio Ortega, Ryosuke Watanabe, Keisuke
Nonaka
- Abstract要約: 運動補償は高分解能基準と分数精度で得られる高精度な変位の恩恵を受けることができることを示す。
提案手法は、領域適応グラフフーリエ変換や領域適応ハール変換などの変換を使用する最先端システムに、大きなゲインを加えることができる。
- 参考スコア(独自算出の注目度): 34.6429671080134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the success of fractional pixel motion in video coding, we
explore the design of motion estimation with fractional-voxel resolution for
compression of color attributes of dynamic 3D point clouds. Our proposed
block-based fractional-voxel motion estimation scheme takes into account the
fundamental differences between point clouds and videos, i.e., the irregularity
of the distribution of voxels within a frame and across frames. We show that
motion compensation can benefit from the higher resolution reference and more
accurate displacements provided by fractional precision. Our proposed scheme
significantly outperforms comparable methods that only use integer motion. The
proposed scheme can be combined with and add sizeable gains to state-of-the-art
systems that use transforms such as Region Adaptive Graph Fourier Transform and
Region Adaptive Haar Transform.
- Abstract(参考訳): ビデオ符号化における分数画素運動の成功に触発され、動的3次元点雲の色属性の圧縮のための分数ボクセル分解能を用いた動き推定の設計について検討する。
提案手法は,フレーム内およびフレーム間におけるボクセル分布の不規則性といった,点雲とビデオの基本的な差異を考慮に入れたブロックベース分数ボクセル運動推定手法である。
運動補償は,高分解能基準と分数精度による変位の精度が向上することを示す。
提案手法は,整数運動のみを用いる手法よりも優れている。
提案されたスキームは、領域適応グラフフーリエ変換や領域適応ハール変換のような変換を用いる最先端システムと組み合わせ、拡張することができる。
関連論文リスト
- U-Motion: Learned Point Cloud Video Compression with U-Structured Motion Estimation [9.528405963599997]
ポイントクラウドビデオ(PCV)は、多くの新興アプリケーションを持つダイナミックシーンの汎用的な3D表現である。
本稿では,PCV形状と属性の両方を学習ベースで圧縮するU-Motionを提案する。
論文 参考訳(メタデータ) (2024-11-21T07:17:01Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
様々な動きによって生じる画像のぼかしを除去することは、難しい問題である。
本研究では,動き適応型分離型協調フィルタと呼ばれる実世界のデブロアリングフィルタモデルを提案する。
本手法は,実世界の動きのぼかし除去に有効な解法を提供し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-04-19T19:44:24Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
ビデオフレームは、より流動的な視覚体験のためにフレームレートを上げることができる、重要な低レベルな計算ビジョンタスクである。
既存の手法は、高度なモーションモデルと合成ネットワークを利用することで大きな成功を収めた。
WaveletVFIは、同様の精度を維持しながら最大40%の計算を削減できるため、他の最先端技術に対してより効率的に処理できる。
論文 参考訳(メタデータ) (2023-09-07T06:41:15Z) - A Constrained Deformable Convolutional Network for Efficient Single
Image Dynamic Scene Blind Deblurring with Spatially-Variant Motion Blur
Kernels Estimation [12.744989551644744]
本稿では,効率的なシングルイメージダイナミックシーンブラインドブルのための制約付き変形可能な畳み込みネットワーク(CDCN)を提案する。
CDCNは、高精度な空間変動運動ぼかしカーネル推定と高品質な画像復元を同時に達成する。
論文 参考訳(メタデータ) (2022-08-23T03:28:21Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
本研究では,映像から3次元の運動,3次元の形状,および高度に動きやすい物体の外観を同時推定する手法を提案する。
提案手法は, 高速移動物体の劣化と3次元再構成において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-29T11:25:14Z) - Self-Supervised Learning of Perceptually Optimized Block Motion
Estimates for Video Compression [50.48504867843605]
多段階畳み込みニューラルネットワークを用いた探索自由ブロック運動推定フレームワークを提案する。
動作補償フレームの知覚品質を最適化するために,マルチスケール構造類似度(MS-SSIM)損失関数をデプロイする。
論文 参考訳(メタデータ) (2021-10-05T03:38:43Z) - FVC: A New Framework towards Deep Video Compression in Feature Space [21.410266039564803]
特徴空間におけるすべての主要な操作(動き推定、動き圧縮、動き補償、残差圧縮)を実行することで特徴空間ビデオ符号化ネットワーク(FVC)を提案する。
提案フレームワークは,HEVC,UVG,VTL,MCL-JCVを含む4つのベンチマークデータセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-20T08:55:32Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z) - Residual Frames with Efficient Pseudo-3D CNN for Human Action
Recognition [10.185425416255294]
そこで我々は,残余フレームを代替の「軽量」運動表現として用いることを提案する。
また、3D畳み込みを2Dと1D畳み込みに分離する新しい擬似3D畳み込みモジュールを開発した。
論文 参考訳(メタデータ) (2020-08-03T17:40:17Z) - End-To-End Trainable Video Super-Resolution Based on a New Mechanism for
Implicit Motion Estimation and Compensation [19.67999205691758]
ビデオの超解像度は、低解像度のビデオから高解像度のビデオを生成することを目指している。
本研究では,暗黙の動作推定と補償を行うための動的局所フィルタネットワークを提案する。
また,ResBlockとオートエンコーダ構造に基づくグローバルリファインメントネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-05T03:47:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。