Differentiable Digital Signal Processing Mixture Model for Synthesis
Parameter Extraction from Mixture of Harmonic Sounds
- URL: http://arxiv.org/abs/2202.00200v1
- Date: Tue, 1 Feb 2022 03:38:49 GMT
- Title: Differentiable Digital Signal Processing Mixture Model for Synthesis
Parameter Extraction from Mixture of Harmonic Sounds
- Authors: Masaya Kawamura, Tomohiko Nakamura, Daichi Kitamura, Hiroshi
Saruwatari, Yu Takahashi, Kazunobu Kondo
- Abstract summary: A differentiable digital signal processing (DDSP) autoencoder is a musical sound that combines a deep neural network (DNN) and spectral modeling synthesis.
It allows us to flexibly edit sounds by changing the fundamental frequency, timbre feature, and loudness (synthesis parameters) extracted from an input sound.
It is designed for a monophonic harmonic sound and cannot handle mixtures of sounds harmonic.
- Score: 29.012177604120048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A differentiable digital signal processing (DDSP) autoencoder is a musical
sound synthesizer that combines a deep neural network (DNN) and spectral
modeling synthesis. It allows us to flexibly edit sounds by changing the
fundamental frequency, timbre feature, and loudness (synthesis parameters)
extracted from an input sound. However, it is designed for a monophonic
harmonic sound and cannot handle mixtures of harmonic sounds. In this paper, we
propose a model (DDSP mixture model) that represents a mixture as the sum of
the outputs of multiple pretrained DDSP autoencoders. By fitting the output of
the proposed model to the observed mixture, we can directly estimate the
synthesis parameters of each source. Through synthesis parameter extraction
experiments, we show that the proposed method has high and stable performance
compared with a straightforward method that applies the DDSP autoencoder to the
signals separated by an audio source separation method.
Related papers
- Synthesizer Sound Matching Using Audio Spectrogram Transformers [2.5944208050492183]
We introduce a synthesizer sound matching model based on the Audio Spectrogram Transformer.
We show that this model can reconstruct parameters of samples generated from a set of 16 parameters.
We also provide audio examples demonstrating the out-of-domain model performance in emulating vocal imitations.
arXiv Detail & Related papers (2024-07-23T16:58:14Z) - DiffMoog: a Differentiable Modular Synthesizer for Sound Matching [48.33168531500444]
DiffMoog is a differentiable modular synthesizer with a comprehensive set of modules typically found in commercial instruments.
Being differentiable, it allows integration into neural networks, enabling automated sound matching.
We introduce an open-source platform that comprises DiffMoog and an end-to-end sound matching framework.
arXiv Detail & Related papers (2024-01-23T08:59:21Z) - Synthesizer Preset Interpolation using Transformer Auto-Encoders [4.213427823201119]
We introduce a bimodal auto-encoder neural network, which simultaneously processes presets using multi-head attention blocks, and audio using convolutions.
This model has been tested on a popular frequency modulation synthesizer with more than one hundred parameters.
After training, the proposed model can be integrated into commercial synthesizers for live or sound design tasks.
arXiv Detail & Related papers (2022-10-27T15:20:18Z) - Differentiable WORLD Synthesizer-based Neural Vocoder With Application
To End-To-End Audio Style Transfer [6.29475963948119]
We propose a differentiable WORLD synthesizer and demonstrate its use in end-to-end audio style transfer tasks.
Our baseline differentiable synthesizer has no model parameters, yet it yields adequate quality synthesis.
An alternative differentiable approach considers extraction of the source spectrum directly, which can improve naturalness.
arXiv Detail & Related papers (2022-08-15T15:48:36Z) - BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for
Binaural Audio Synthesis [129.86743102915986]
We formulate the synthesis process from a different perspective by decomposing the audio into a common part.
We propose BinauralGrad, a novel two-stage framework equipped with diffusion models to synthesize them respectively.
Experiment results show that BinauralGrad outperforms the existing baselines by a large margin in terms of both object and subject evaluation metrics.
arXiv Detail & Related papers (2022-05-30T02:09:26Z) - NeuralDPS: Neural Deterministic Plus Stochastic Model with Multiband
Excitation for Noise-Controllable Waveform Generation [67.96138567288197]
We propose a novel neural vocoder named NeuralDPS which can retain high speech quality and acquire high synthesis efficiency and noise controllability.
It generates waveforms at least 280 times faster than the WaveNet vocoder.
It is also 28% faster than WaveGAN's synthesis efficiency on a single core.
arXiv Detail & Related papers (2022-03-05T08:15:29Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
This study demonstrates, for the first time, that the synthesis-based approach can also perform well on this problem.
Specifically, we propose a novel speech separation/enhancement model based on the recognition of discrete symbols.
By utilizing the synthesis model with the input of discrete symbols, after the prediction of discrete symbol sequence, each target speech could be re-synthesized.
arXiv Detail & Related papers (2021-12-17T08:35:40Z) - Multi-Channel End-to-End Neural Diarization with Distributed Microphones [53.99406868339701]
We replace Transformer encoders in EEND with two types of encoders that process a multi-channel input.
We also propose a model adaptation method using only single-channel recordings.
arXiv Detail & Related papers (2021-10-10T03:24:03Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.