論文の概要: From Explanations to Segmentation: Using Explainable AI for Image
Segmentation
- arxiv url: http://arxiv.org/abs/2202.00315v1
- Date: Tue, 1 Feb 2022 10:26:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-02 14:42:36.687444
- Title: From Explanations to Segmentation: Using Explainable AI for Image
Segmentation
- Title(参考訳): 説明からセグメンテーションへ:画像セグメンテーションに説明可能なAIを使う
- Authors: Clemens Seibold, Johannes K\"unzel, Anna Hilsmann, Peter Eisert
- Abstract要約: 我々は、説明可能なAI(XAI)コミュニティの進歩の上に構築し、ピクセル単位のバイナリセグメンテーションを抽出する。
我々は,既存のU-Netセグメンテーションアーキテクチャと比較して,同様の結果が得られることを示す。
トレーニングサンプルは画像レベルでのみラベル付けする必要があるため,提案手法は弱教師付きでトレーニングすることができる。
- 参考スコア(独自算出の注目度): 1.8581514902689347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The new era of image segmentation leveraging the power of Deep Neural Nets
(DNNs) comes with a price tag: to train a neural network for pixel-wise
segmentation, a large amount of training samples has to be manually labeled on
pixel-precision. In this work, we address this by following an indirect
solution. We build upon the advances of the Explainable AI (XAI) community and
extract a pixel-wise binary segmentation from the output of the Layer-wise
Relevance Propagation (LRP) explaining the decision of a classification
network. We show that we achieve similar results compared to an established
U-Net segmentation architecture, while the generation of the training data is
significantly simplified. The proposed method can be trained in a weakly
supervised fashion, as the training samples must be only labeled on
image-level, at the same time enabling the output of a segmentation mask. This
makes it especially applicable to a wider range of real applications where
tedious pixel-level labelling is often not possible.
- Abstract(参考訳): ディープニューラルネットワーク(dnn)のパワーを活用した新たなイメージセグメンテーションの時代には、価格タグが付いている。 ピクセル単位のセグメンテーションのためにニューラルネットワークをトレーニングするには、大量のトレーニングサンプルをピクセル精度で手作業でラベル付けする必要がある。
本研究では,これを間接解法に従うことで解決する。
我々は、説明可能なAI(XAI)コミュニティの進歩の上に構築し、分類ネットワークの決定を説明するレイヤワイド関連伝搬(LRP)の出力から画素ワイドバイナリセグメンテーションを抽出する。
既存のu-netセグメンテーションアーキテクチャと比較して同様の結果が得られたが、トレーニングデータの生成は大幅に単純化された。
提案手法は,トレーニングサンプルを画像レベルでのみラベル付けすると同時に,セグメンテーションマスクの出力を可能にするため,弱教師付き方式でトレーニングすることができる。
これは特に、退屈なピクセルレベルのラベリングがしばしば不可能な、広範囲の実際のアプリケーションに適用できる。
関連論文リスト
- Adaptive Noise-Tolerant Network for Image Segmentation [1.57731592348751]
そこで本研究では,非完全・ノイズセグメンテーションとオフザシェルフセグメンテーションアルゴリズムを組み合わせることで,適応型ノイズ耐性ネットワーク(ANTN)モデルにより,より優れたセグメンテーション結果が得られるかどうかを考察する。
1)複数のノイズラベルを1つのディープラーニングモデルに統合できる,(2)確率的パラメータを含む雑音分割モデリングは、与えられたテスト画像の外観に応じて適応する,という2つの新しい側面で、ノイズラベルのディープラーニングを画像セグメンテーションに拡張する。
論文 参考訳(メタデータ) (2025-01-13T09:49:34Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
画像やビデオにおける火の局所化は、火災事故に対処するための自律システムにとって重要なステップである。
我々は,ネットワークのトレーニングに画像ラベルのみを使用する,画像中の火の弱い制御セグメント化について検討する。
CNNの中間層における特徴量の平均値は,2値セグメンテーション問題である火災セグメンテーションの場合,従来のクラスアクティベーションマッピング(CAM)法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-16T11:56:28Z) - Maximize the Exploration of Congeneric Semantics for Weakly Supervised
Semantic Segmentation [27.155133686127474]
グラフニューラルネットワーク(P-GNN)を,同一のクラスラベルを含む異なる画像からの自己検出パッチに基づいて構築する。
PASCAL VOC 2012ベンチマークで実験を行い、そのモデルにより最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-10-08T08:59:16Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Automatic Image Labelling at Pixel Level [21.59653873040243]
画素レベルの画像ラベリングを自動的に生成する興味深い学習手法を提案する。
The Guided Filter Network (GFN) was first developed to learn the segmentation knowledge from a source domain。
GFNはそのようなセグメンテーションの知識を変換し、ターゲットドメインで粗いオブジェクトマスクを生成する。
論文 参考訳(メタデータ) (2020-07-15T00:34:11Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z) - RGB-based Semantic Segmentation Using Self-Supervised Depth Pre-Training [77.62171090230986]
本稿では,任意の意味的RGBセグメンテーション手法の事前学習に使用できる,スケーラブルで自己管理の容易な手法を提案する。
特に、我々の事前学習アプローチでは、深度センサーを用いて得られるラベルを自動生成する。
提案したHNラベルによる自己教師付き事前学習が,ImageNetの事前学習にどのように応用できるかを示す。
論文 参考訳(メタデータ) (2020-02-06T11:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。