Machine-learning-enhanced quantum sensors for accurate magnetic field
imaging
- URL: http://arxiv.org/abs/2202.00380v1
- Date: Tue, 1 Feb 2022 12:48:06 GMT
- Title: Machine-learning-enhanced quantum sensors for accurate magnetic field
imaging
- Authors: Moeta Tsukamoto, Shuji Ito, Kensuke Ogawa, Yuto Ashida, Kento Sasaki
and Kensuke Kobayashi
- Abstract summary: Local detection of magnetic fields is crucial for characterizing nano- and micro-materials.
Diamond nanoparticles (nanodiamonds) offer an attractive opportunity to chieve high spatial resolution.
A physical model for such a randomly oriented nanodiamond ensemble (NDE) is available, but the complexity of actual experimental conditions still limits the accuracy of deducing magnetic fields.
Here, we demonstrate magnetic field imaging with high accuracy of 1.8 $mu$T combining NDE and machine learning without any physical models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local detection of magnetic fields is crucial for characterizing nano- and
micro-materials and has been implemented using various scanning techniques or
even diamond quantum sensors. Diamond nanoparticles (nanodiamonds) offer an
attractive opportunity to chieve high spatial resolution because they can
easily be close to the target within a few 10 nm simply by attaching them to
its surface. A physical model for such a randomly oriented nanodiamond ensemble
(NDE) is available, but the complexity of actual experimental conditions still
limits the accuracy of deducing magnetic fields. Here, we demonstrate magnetic
field imaging with high accuracy of 1.8 $\mu$T combining NDE and machine
learning without any physical models. We also discover the field direction
dependence of the NDE signal, suggesting the potential application for vector
magnetometry and improvement of the existing model. Our method further enriches
the performance of NDE to achieve the accuracy to visualize mesoscopic current
and magnetism in atomic-layer materials and to expand the applicability in
arbitrarily shaped materials, including living organisms. This achievement will
bridge machine learning and quantum sensing for accurate measurements.
Related papers
- Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Sub-micron spin-based magnetic field imaging with an organic light
emitting diode [0.0]
We demonstrate an integrated organic light emitting diode (OLED) based quantum sensor for magnetic field imaging.
By considering the monolithic OLED as an array of individual virtual sensors, we achieve sub-micron magnetic field mapping with field sensitivity of 160 $mu$T Hz$-1/2$ um$-2$.
arXiv Detail & Related papers (2022-07-06T07:10:16Z) - Sub-nanotesla Sensitivity at the Nanoscale with a Single Spin [11.230326490436141]
We report that a sensitivity of 0.5 $bfnT/sqrtHz$ at the nanoscale is achieved experimentally by using nitrogen-vacancy defects in diamond.
The achieved sensitivity is substantially enhanced by integrating with multiple quantum techniques.
arXiv Detail & Related papers (2022-05-09T16:42:54Z) - Optically detected magnetic resonance with an open source platform [0.0]
Localized electronic spins in solid-state environments form versatile platforms for quantum sensing, metrology and quantum information processing.
With optically detected magnetic resonance (ODMR), it is possible to prepare and readout highly coherent spin systems.
This article aims to steepen the learning curve of newcomers in ODMR from a variety of scientific backgrounds.
arXiv Detail & Related papers (2022-04-29T18:09:18Z) - Nanodiamonds based optical-fiber quantum probe for magnetic field and
biological sensing [6.643766442180283]
In this work, a miniature optical-fiber quantum probe, configured by chemically-modifying nanodiamonds NV centers, is developed.
The magnetic field detection sensitivity of the probe is significantly enhanced to 0.57 nT/Hz1/2 @ 1Hz, a new record among the fiber magnetometers based on nanodiamonds NV.
arXiv Detail & Related papers (2022-02-24T01:41:13Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.