Pose Guided Image Generation from Misaligned Sources via Residual Flow
Based Correction
- URL: http://arxiv.org/abs/2202.00843v1
- Date: Wed, 2 Feb 2022 01:30:15 GMT
- Title: Pose Guided Image Generation from Misaligned Sources via Residual Flow
Based Correction
- Authors: Jiawei Lu, He Wang, Tianjia Shao, Yin Yang, Kun Zhou
- Abstract summary: We propose a new general approach which models multiple types of variations among sources, such as view angles, poses, facial expressions, in a unified framework.
We verify our approach on a variety of data including humans bodies, faces, city scenes and 3D objects.
- Score: 31.39424991391106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating new images with desired properties (e.g. new view/poses) from
source images has been enthusiastically pursued recently, due to its wide range
of potential applications. One way to ensure high-quality generation is to use
multiple sources with complementary information such as different views of the
same object. However, as source images are often misaligned due to the large
disparities among the camera settings, strong assumptions have been made in the
past with respect to the camera(s) or/and the object in interest, limiting the
application of such techniques. Therefore, we propose a new general approach
which models multiple types of variations among sources, such as view angles,
poses, facial expressions, in a unified framework, so that it can be employed
on datasets of vastly different nature. We verify our approach on a variety of
data including humans bodies, faces, city scenes and 3D objects. Both the
qualitative and quantitative results demonstrate the better performance of our
method than the state of the art.
Related papers
- Generalizable Single-view Object Pose Estimation by Two-side Generating and Matching [19.730504197461144]
We present a novel generalizable object pose estimation method to determine the object pose using only one RGB image.
Our method offers generalization to unseen objects without extensive training, operates with a single reference image of the object, and eliminates the need for 3D object models or multiple views of the object.
arXiv Detail & Related papers (2024-11-24T14:31:50Z) - A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding [76.44979557843367]
We propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior.
We introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information.
We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image.
arXiv Detail & Related papers (2024-11-04T08:50:16Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - UpFusion: Novel View Diffusion from Unposed Sparse View Observations [66.36092764694502]
UpFusion can perform novel view synthesis and infer 3D representations for an object given a sparse set of reference images.
We show that this mechanism allows generating high-fidelity novel views while improving the synthesis quality given additional (unposed) images.
arXiv Detail & Related papers (2023-12-11T18:59:55Z) - Cross-domain Compositing with Pretrained Diffusion Models [34.98199766006208]
We employ a localized, iterative refinement scheme which infuses the injected objects with contextual information derived from the background scene.
Our method produces higher quality and realistic results without requiring any annotations or training.
arXiv Detail & Related papers (2023-02-20T18:54:04Z) - Re-Imagen: Retrieval-Augmented Text-to-Image Generator [58.60472701831404]
Retrieval-Augmented Text-to-Image Generator (Re-Imagen)
Retrieval-Augmented Text-to-Image Generator (Re-Imagen)
arXiv Detail & Related papers (2022-09-29T00:57:28Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - Generating Annotated High-Fidelity Images Containing Multiple Coherent
Objects [10.783993190686132]
We propose a multi-object generation framework that can synthesize images with multiple objects without explicitly requiring contextual information.
We demonstrate how coherency and fidelity are preserved with our method through experiments on the Multi-MNIST and CLEVR datasets.
arXiv Detail & Related papers (2020-06-22T11:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.