Wide-angle Image Rectification: A Survey
- URL: http://arxiv.org/abs/2011.12108v2
- Date: Wed, 1 Dec 2021 12:24:03 GMT
- Title: Wide-angle Image Rectification: A Survey
- Authors: Jinlong Fan and Jing Zhang and Stephen J. Maybank and Dacheng Tao
- Abstract summary: wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
- Score: 86.36118799330802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wide field-of-view (FOV) cameras, which capture a larger scene area than
narrow FOV cameras, are used in many applications including 3D reconstruction,
autonomous driving, and video surveillance. However, wide-angle images contain
distortions that violate the assumptions underlying pinhole camera models,
resulting in object distortion, difficulties in estimating scene distance,
area, and direction, and preventing the use of off-the-shelf deep models
trained on undistorted images for downstream computer vision tasks. Image
rectification, which aims to correct these distortions, can solve these
problems. In this paper, we comprehensively survey progress in wide-angle image
rectification from transformation models to rectification methods.
Specifically, we first present a detailed description and discussion of the
camera models used in different approaches. Then, we summarize several
distortion models including radial distortion and projection distortion. Next,
we review both traditional geometry-based image rectification methods and deep
learning-based methods, where the former formulate distortion parameter
estimation as an optimization problem and the latter treat it as a regression
problem by leveraging the power of deep neural networks. We evaluate the
performance of state-of-the-art methods on public datasets and show that
although both kinds of methods can achieve good results, these methods only
work well for specific camera models and distortion types. We also provide a
strong baseline model and carry out an empirical study of different distortion
models on synthetic datasets and real-world wide-angle images. Finally, we
discuss several potential research directions that are expected to further
advance this area in the future.
Related papers
- Möbius Transform for Mitigating Perspective Distortions in Representation Learning [43.86985901138407]
Perspective distortion (PD) causes unprecedented changes in shape, size, orientation, angles, and other spatial relationships in images.
We propose mitigating perspective distortion (MPD) by employing a fine-grained parameter control on a specific family of M"obius transform.
We present a dedicated perspectively distorted benchmark dataset, ImageNet-PD, to benchmark the robustness of deep learning models against this new dataset.
arXiv Detail & Related papers (2024-03-07T15:39:00Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - How to turn your camera into a perfect pinhole model [0.38233569758620056]
We propose a novel approach that involves a pre-processing step to remove distortions from images.
Our method does not need to assume any distortion model and can be applied to severely warped images.
This model allows for a serious upgrade of many algorithms and applications.
arXiv Detail & Related papers (2023-09-20T13:54:29Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
We propose a learning algorithm to regress per-sequence calibration parameters using an efficient family of general camera models.
Our procedure achieves self-calibration results with sub-pixel reprojection error, outperforming other learning-based methods.
arXiv Detail & Related papers (2021-12-06T19:42:05Z) - Rethinking Generic Camera Models for Deep Single Image Camera
Calibration to Recover Rotation and Fisheye Distortion [8.877834897951578]
We propose a generic camera model that has the potential to address various types of distortion.
Our proposed method outperformed conventional methods on two largescale datasets and images captured by off-the-shelf fisheye cameras.
arXiv Detail & Related papers (2021-11-25T05:58:23Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a
Generic Framework for Handling Common Camera Distortion Models [8.484676769284578]
We propose a generic scale-aware self-supervised pipeline for estimating depth, euclidean distance, and visual odometry from unrectified monocular videos.
The proposed algorithm is evaluated further on the KITTI rectified dataset, and we achieve state-of-the-art results.
arXiv Detail & Related papers (2020-07-13T20:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.