Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
Planning
- URL: http://arxiv.org/abs/2202.00907v1
- Date: Wed, 2 Feb 2022 08:11:20 GMT
- Title: Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
Planning
- Authors: Naman Shah, Siddharth Srivastava
- Abstract summary: We present a new approach for bootstrapping the entire hierarchical planning process.
It shows how abstract states and actions for new environments can be computed automatically.
It uses the learned abstractions in a novel multi-source bi-directional hierarchical robot planning algorithm.
- Score: 27.384742641275228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of learning abstractions that boost robot
planning performance while providing strong guarantees of reliability. Although
state-of-the-art hierarchical robot planning algorithms allow robots to
efficiently compute long-horizon motion plans for achieving user desired tasks,
these methods typically rely upon environment-dependent state and action
abstractions that need to be hand-designed by experts.
We present a new approach for bootstrapping the entire hierarchical planning
process. It shows how abstract states and actions for new environments can be
computed automatically using the critical regions predicted by a deep
neural-network with an auto-generated robot specific architecture. It uses the
learned abstractions in a novel multi-source bi-directional hierarchical robot
planning algorithm that is sound and probabilistically complete. An extensive
empirical evaluation on twenty different settings using holonomic and
non-holonomic robots shows that (a) the learned abstractions provide the
information necessary for efficient multi-source hierarchical planning; and
that (b) this approach of learning abstraction and planning outperforms
state-of-the-art baselines by nearly a factor of ten in terms of planning time
on test environments not seen during training.
Related papers
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
We present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations.
We show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
arXiv Detail & Related papers (2024-10-30T16:11:05Z) - From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions,
and Models for Planning from Raw Data [20.01856556195228]
This paper presents the first approach for autonomously learning logic-based relational representations for abstract states and actions.
The learned representations constitute auto-invented PDDL-like domain models.
Empirical results in deterministic settings show that powerful abstract representations can be learned from just a handful of robot trajectories.
arXiv Detail & Related papers (2024-02-19T06:28:21Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Learning Efficient Abstract Planning Models that Choose What to Predict [28.013014215441505]
We show that existing symbolic operator learning approaches fall short in many robotics domains.
This is primarily because they attempt to learn operators that exactly predict all observed changes in the abstract state.
We propose to learn operators that 'choose what to predict' by only modelling changes necessary for abstract planning to achieve specified goals.
arXiv Detail & Related papers (2022-08-16T13:12:59Z) - Inventing Relational State and Action Abstractions for Effective and
Efficient Bilevel Planning [26.715198108255162]
We develop a novel framework for learning state and action abstractions.
We learn relational, neuro-symbolic abstractions that generalize over object identities and numbers.
We show that our learned abstractions are able to quickly solve held-out tasks of longer horizons.
arXiv Detail & Related papers (2022-03-17T22:13:09Z) - Active Learning of Abstract Plan Feasibility [17.689758291966502]
We present an active learning approach to efficiently acquire an APF predictor through task-independent, curious exploration on a robot.
We leverage an infeasible subsequence property to prune candidate plans in the active learning strategy, allowing our system to learn from less data.
In a stacking domain where objects have non-uniform mass distributions, we show that our system permits real robot learning of an APF model in four hundred self-supervised interactions.
arXiv Detail & Related papers (2021-07-01T18:17:01Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Combining Planning and Learning of Behavior Trees for Robotic Assembly [0.9262157005505219]
We propose a method for generating Behavior Trees using a Genetic Programming algorithm.
We show that this type of high level learning of Behavior Trees can be transferred to a real system without further training.
arXiv Detail & Related papers (2021-03-16T13:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.