Learning adaptive planning representations with natural language
guidance
- URL: http://arxiv.org/abs/2312.08566v1
- Date: Wed, 13 Dec 2023 23:35:31 GMT
- Title: Learning adaptive planning representations with natural language
guidance
- Authors: Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S. Siegel, Jiahai
Feng, Noa Korneev, Joshua B. Tenenbaum, Jacob Andreas
- Abstract summary: This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
- Score: 90.24449752926866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective planning in the real world requires not only world knowledge, but
the ability to leverage that knowledge to build the right representation of the
task at hand. Decades of hierarchical planning techniques have used
domain-specific temporal action abstractions to support efficient and accurate
planning, almost always relying on human priors and domain knowledge to
decompose hard tasks into smaller subproblems appropriate for a goal or set of
goals. This paper describes Ada (Action Domain Acquisition), a framework for
automatically constructing task-specific planning representations using
task-general background knowledge from language models (LMs). Starting with a
general-purpose hierarchical planner and a low-level goal-conditioned policy,
Ada interactively learns a library of planner-compatible high-level action
abstractions and low-level controllers adapted to a particular domain of
planning tasks. On two language-guided interactive planning benchmarks (Mini
Minecraft and ALFRED Household Tasks), Ada strongly outperforms other
approaches that use LMs for sequential decision-making, offering more accurate
plans and better generalization to complex tasks.
Related papers
- LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning [7.36760703426119]
This survey aims to highlight the existing challenges in planning with language models.
It focuses on key areas such as embodied environments, optimal scheduling, competitive and cooperative games, task decomposition, reasoning, and planning.
arXiv Detail & Related papers (2024-09-03T11:39:52Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [89.68433168477227]
Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular.
This paper investigates enhancing the planning abilities of LLMs through instruction tuning.
To address this limitation, this paper explores the automated synthesis of diverse environments and a gradual range of planning tasks.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
Proactive Agent Planning requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction.
We propose a novel multi-agent framework, Clarification-Execution-Planning (textttCEP), which consists of three agents specialized in clarification, execution, and planning.
arXiv Detail & Related papers (2024-06-18T14:07:28Z) - Embodied Instruction Following in Unknown Environments [66.60163202450954]
We propose an embodied instruction following (EIF) method for complex tasks in the unknown environment.
We build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller.
For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues.
arXiv Detail & Related papers (2024-06-17T17:55:40Z) - Interactive Task Planning with Language Models [97.86399877812923]
An interactive robot framework accomplishes long-horizon task planning and can easily generalize to new goals or distinct tasks, even during execution.
Recent large language model based approaches can allow for more open-ended planning but often require heavy prompt engineering or domain-specific pretrained models.
We propose a simple framework that achieves interactive task planning with language models.
arXiv Detail & Related papers (2023-10-16T17:59:12Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
We consider the problem of automated planning, where the objective is to find a sequence of actions that will move an agent from an initial state of the world to a desired goal state.
We hypothesize that given a large number of available planners and diverse planning domains; they carry essential information that can be leveraged to identify suitable planners and improve their performance for a domain.
arXiv Detail & Related papers (2023-07-25T14:51:07Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
We propose a novel framework and algorithm for hierarchical planning based on the principle of delegation.
We show this planning approach is experimentally very competitive to classic planning and reinforcement learning techniques on a variety of domains.
arXiv Detail & Related papers (2020-10-25T04:36:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.