Auto-Transfer: Learning to Route Transferrable Representations
- URL: http://arxiv.org/abs/2202.01011v3
- Date: Fri, 4 Feb 2022 03:44:03 GMT
- Title: Auto-Transfer: Learning to Route Transferrable Representations
- Authors: Keerthiram Murugesan, Vijay Sadashivaiah, Ronny Luss, Karthikeyan
Shanmugam, Pin-Yu Chen, Amit Dhurandhar
- Abstract summary: We propose a novel adversarial multi-armed bandit approach which automatically learns to route source representations to appropriate target representations.
We see upwards of 5% accuracy improvements compared with the state-of-the-art knowledge transfer methods.
- Score: 77.30427535329571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge transfer between heterogeneous source and target networks and tasks
has received a lot of attention in recent times as large amounts of quality
labelled data can be difficult to obtain in many applications. Existing
approaches typically constrain the target deep neural network (DNN) feature
representations to be close to the source DNNs feature representations, which
can be limiting. We, in this paper, propose a novel adversarial multi-armed
bandit approach which automatically learns to route source representations to
appropriate target representations following which they are combined in
meaningful ways to produce accurate target models. We see upwards of 5%
accuracy improvements compared with the state-of-the-art knowledge transfer
methods on four benchmark (target) image datasets CUB200, Stanford Dogs, MIT67,
and Stanford40 where the source dataset is ImageNet. We qualitatively analyze
the goodness of our transfer scheme by showing individual examples of the
important features our target network focuses on in different layers compared
with the (closest) competitors. We also observe that our improvement over other
methods is higher for smaller target datasets making it an effective tool for
small data applications that may benefit from transfer learning.
Related papers
- On the Transferability of Learning Models for Semantic Segmentation for
Remote Sensing Data [12.500746892824338]
Recent deep learning-based methods outperform traditional learning methods on remote sensing (RS) semantic segmentation/classification tasks.
Yet, there is no comprehensive analysis of their transferability, i.e., to which extent a model trained on a source domain can be readily applicable to a target domain.
This paper investigates the raw transferability of traditional and deep learning (DL) models, as well as the effectiveness of domain adaptation (DA) approaches.
arXiv Detail & Related papers (2023-10-16T15:13:36Z) - CDFSL-V: Cross-Domain Few-Shot Learning for Videos [58.37446811360741]
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples.
Existing methods in video action recognition rely on large labeled datasets from the same domain.
We propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning.
arXiv Detail & Related papers (2023-09-07T19:44:27Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
We propose HASTE, a new strategy to estimate the transferability of a source model to a particular target task using only a harder subset of target data.
We show that HASTE can be used with any existing transferability metric to improve their reliability.
Our experimental results across multiple source model architectures, target datasets, and transfer learning tasks show that HASTE modified metrics are consistently better or on par with the state of the art transferability metrics.
arXiv Detail & Related papers (2023-01-17T14:50:18Z) - Unsupervised Image Semantic Segmentation through Superpixels and Graph
Neural Networks [6.123324869194195]
Unsupervised image segmentation is an important task in many real-world scenarios where labelled data is of scarce availability.
We propose a novel approach that harnesses recent advances in unsupervised learning using a combination of Mutual Information Maximization (MIM), Neural Superpixel and Graph Neural Networks (GNNs) in an end-to-end manner.
arXiv Detail & Related papers (2022-10-21T08:35:18Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.