Transfer Learning Under High-Dimensional Network Convolutional Regression Model
- URL: http://arxiv.org/abs/2504.19979v2
- Date: Tue, 29 Apr 2025 04:44:07 GMT
- Title: Transfer Learning Under High-Dimensional Network Convolutional Regression Model
- Authors: Liyuan Wang, Jiachen Chen, Kathryn L. Lunetta, Danyang Huang, Huimin Cheng, Debarghya Mukherjee,
- Abstract summary: We propose a high-dimensional transfer learning framework based on network convolutional regression ( NCR)<n>Our methodology includes a two-step transfer learning algorithm that addresses domain shift between source and target networks.<n> Empirical evaluations, including simulations and a real-world application using Sina Weibo data, demonstrate substantial improvements in prediction accuracy.
- Score: 20.18595334666282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning enhances model performance by utilizing knowledge from related domains, particularly when labeled data is scarce. While existing research addresses transfer learning under various distribution shifts in independent settings, handling dependencies in networked data remains challenging. To address this challenge, we propose a high-dimensional transfer learning framework based on network convolutional regression (NCR), inspired by the success of graph convolutional networks (GCNs). The NCR model incorporates random network structure by allowing each node's response to depend on its features and the aggregated features of its neighbors, capturing local dependencies effectively. Our methodology includes a two-step transfer learning algorithm that addresses domain shift between source and target networks, along with a source detection mechanism to identify informative domains. Theoretically, we analyze the lasso estimator in the context of a random graph based on the Erdos-Renyi model assumption, demonstrating that transfer learning improves convergence rates when informative sources are present. Empirical evaluations, including simulations and a real-world application using Sina Weibo data, demonstrate substantial improvements in prediction accuracy, particularly when labeled data in the target domain is limited.
Related papers
- Transfer Learning through Enhanced Sufficient Representation: Enriching Source Domain Knowledge with Target Data [2.308168896770315]
We introduce a novel method for transfer learning called Transfer learning through Enhanced Sufficient Representation (TESR)<n>Our approach begins by estimating a sufficient and invariant representation from the source domains.<n>This representation is then enhanced with an independent component derived from the target data, ensuring that it is sufficient for the target domain and adaptable to its specific characteristics.
arXiv Detail & Related papers (2025-02-22T13:18:28Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.<n>Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Learning State-Augmented Policies for Information Routing in Communication Networks [84.76186111434818]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.<n>We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.<n>In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - Bridged-GNN: Knowledge Bridge Learning for Effective Knowledge Transfer [65.42096702428347]
Graph Neural Networks (GNNs) aggregate information from neighboring nodes.
Knowledge Bridge Learning (KBL) learns a knowledge-enhanced posterior distribution for target domains.
Bridged-GNN includes an Adaptive Knowledge Retrieval module to build Bridged-Graph and a Graph Knowledge Transfer module.
arXiv Detail & Related papers (2023-08-18T12:14:51Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - Variational Transfer Learning using Cross-Domain Latent Modulation [1.9662978733004601]
We introduce a novel cross-domain latent modulation mechanism to a variational autoencoder framework so as to achieve effective transfer learning.
Deep representations of the source and target domains are first extracted by a unified inference model and aligned by employing gradient reversal.
The learned deep representations are then cross-modulated to the latent encoding of the alternative domain, where consistency constraints are also applied.
arXiv Detail & Related papers (2022-05-31T03:47:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Probing transfer learning with a model of synthetic correlated datasets [11.53207294639557]
Transfer learning can significantly improve the sample efficiency of neural networks.
We re-think a solvable model of synthetic data as a framework for modeling correlation between data-sets.
We show that our model can capture a range of salient features of transfer learning with real data.
arXiv Detail & Related papers (2021-06-09T22:15:41Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes [6.419457653976053]
We describe a transfer learning use case for a domain with a data-starved regime.
We evaluate the effectiveness of convolutional feature extraction and fine-tuning.
We conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.
arXiv Detail & Related papers (2020-02-29T18:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.