論文の概要: L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT
Language Models, and Resources
- arxiv url: http://arxiv.org/abs/2202.01159v1
- Date: Wed, 2 Feb 2022 17:35:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 13:50:43.459720
- Title: L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT
Language Models, and Resources
- Title(参考訳): L3Cube-MahaCorpusとMahaBERT:Marathi Monolingual Corpus、Marathi BERT言語モデル、リソース
- Authors: Raviraj Joshi
- Abstract要約: 我々は、L3Cube-MahaCorpusを、異なるインターネットソースから取り除かれたマラタイのモノリンガルデータセットとして提示する。
既存のMarathiモノリンガルコーパスを24.8M文と289Mトークンで拡張する。
下流分類とNERタスクにおけるこれらのリソースの有効性を示す。
- 参考スコア(独自算出の注目度): 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present L3Cube-MahaCorpus a Marathi monolingual data set scraped from
different internet sources. We expand the existing Marathi monolingual corpus
with 24.8M sentences and 289M tokens. We further present, MahaBERT, MahaAlBERT,
and MahaRoBerta all BERT-based masked language models, and MahaFT, the fast
text word embeddings both trained on full Marathi corpus with 752M tokens. We
show the effectiveness of these resources on downstream classification and NER
tasks. Marathi is a popular language in India but still lacks these resources.
This work is a step forward in building open resources for the Marathi
language. The data and models are available at
https://github.com/l3cube-pune/MarathiNLP .
- Abstract(参考訳): 我々は、L3Cube-MahaCorpusを、異なるインターネットソースから取り除かれたマラタイのモノリンガルデータセットとして提示する。
既存のMarathiモノリンガルコーパスを24.8M文と289Mトークンで拡張する。
さらにmahabert、mahalbert、maharobertaといったbertベースのマスキング言語モデルと、752mのトークンを持つ完全なmarathiコーパスでトレーニングされた高速テキストの埋め込みであるmahaftについても紹介する。
下流分類とNERタスクにおけるこれらのリソースの有効性を示す。
マラーティー語はインドで人気のある言語であるが、これらの資源は乏しい。
この作業は、Marathi言語のためのオープンリソースを構築するための一歩です。
データとモデルはhttps://github.com/l3cube-pune/marathinlpで入手できる。
関連論文リスト
- Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - CoSTA: Code-Switched Speech Translation using Aligned Speech-Text Interleaving [61.73180469072787]
インド語から英語のテキストへのコード変更音声の音声翻訳(ST)の問題に焦点をあてる。
本稿では、事前訓練された自動音声認識(ASR)と機械翻訳(MT)モジュールを足場として、新しいエンドツーエンドモデルアーキテクチャCOSTAを提案する。
COSTAは、多くの競合するカスケードおよびエンドツーエンドのマルチモーダルベースラインを3.5BLEUポイントまで上回っている。
論文 参考訳(メタデータ) (2024-06-16T16:10:51Z) - TransMI: A Framework to Create Strong Baselines from Multilingual Pretrained Language Models for Transliterated Data [50.40191599304911]
そこで我々は,Transliterate Transliteration-Merge (TransMI)を提案する。
結果は、モデルやタスクによって異なるが、3%から34%の改善が一貫したことを示している。
論文 参考訳(メタデータ) (2024-05-16T09:08:09Z) - L3Cube-MahaNLP: Marathi Natural Language Processing Datasets, Models,
and Library [1.14219428942199]
インドで3番目に人気のある言語であるにもかかわらず、マラタイ語は有用なNLP資源を欠いている。
L3Cube-MahaNLPでは,マラウイの自然言語処理のためのリソースとライブラリの構築を目標としている。
我々は、感情分析、名前付きエンティティ認識、ヘイトスピーチ検出などの教師付きタスクのためのデータセットとトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-05-29T17:51:00Z) - Mono vs Multilingual BERT for Hate Speech Detection and Text
Classification: A Case Study in Marathi [0.966840768820136]
マラーティー語に焦点をあて、ヘイトスピーチの検出、感情分析、マラティー語における単純なテキスト分類のためのデータセットのモデルを評価する。
我々は,mBERT,indicBERT,xlm-RoBERTaなどの標準多言語モデルを用い,MahaBERT,MahaALBERT,MahaRoBERTaと比較した。
単言語MahaBERTをベースとしたモデルでは,多言語からの文の埋め込みに比べて表現が豊富であることを示す。
論文 参考訳(メタデータ) (2022-04-19T05:07:58Z) - L3Cube-MahaNER: A Marathi Named Entity Recognition Dataset and BERT
models [0.7874708385247353]
我々はマハーラーシュトラ州の住民によって顕著に話されるインドの言語であるマラティに焦点を当てている。
マラタイで最初の主要金本位認証データセットであるL3Cube-MahaNERを提示する。
最後に、mBERT、XLM-RoBERTa、IndicBERT、MahaBERTなどの異なるCNN、LSTM、Transformerベースのモデルでデータセットをベンチマークする。
論文 参考訳(メタデータ) (2022-04-12T18:32:15Z) - "A Passage to India": Pre-trained Word Embeddings for Indian Languages [30.607474624873014]
既存のアプローチを使って、14のインドの言語に複数の単語を埋め込みます。
これらすべての言語への組み込みを単一のリポジトリに配置します。
8つの異なるアプローチを使って、合計436のモデルをリリースします。
論文 参考訳(メタデータ) (2021-12-27T17:31:04Z) - Experimental Evaluation of Deep Learning models for Marathi Text
Classification [0.0]
CNN, LSTM, ULMFiT, BERT ベースのモデルを, 2つの公開 Marathi テキスト分類データセットで評価する。
CNNとLSTMに基づく基本単層モデルとFastTextの埋め込みは、利用可能なデータセット上でBERTベースのモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2021-01-13T06:21:27Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Anchor-based Bilingual Word Embeddings for Low-Resource Languages [76.48625630211943]
良質な単言語単語埋め込み(MWEs)は、大量のラベルのないテキストを持つ言語向けに構築することができる。
MWEは、数千の単語変換ペアだけでバイリンガル空間に整列することができる。
本稿では,高資源言語におけるベクトル空間を出発点とするBWEの構築手法を提案する。
論文 参考訳(メタデータ) (2020-10-23T19:17:00Z) - A Multilingual Parallel Corpora Collection Effort for Indian Languages [43.62422999765863]
インドではヒンディー語、テルグ語、タミル語、マラヤラム語、グジャラート語、ウルドゥー語、ベンガル語、オリヤ語、マラティー語、パンジャービ語、英語の10言語に平行なコーパスを提示する。
コーパスは、言語間でコンテンツを共有するオンラインソースからコンパイルされる。
論文 参考訳(メタデータ) (2020-07-15T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。