論文の概要: Speaker Normalization for Self-supervised Speech Emotion Recognition
- arxiv url: http://arxiv.org/abs/2202.01252v1
- Date: Wed, 2 Feb 2022 19:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-05 05:37:49.942546
- Title: Speaker Normalization for Self-supervised Speech Emotion Recognition
- Title(参考訳): 自己教師型音声感情認識のための話者正規化
- Authors: Itai Gat, Hagai Aronowitz, Weizhong Zhu, Edmilson Morais, Ron Hoory
- Abstract要約: 特徴表現から話者特性を正規化しながら、音声感情認識タスクを学習する勾配に基づく逆学習フレームワークを提案する。
提案手法は話者に依存しない設定と話者に依存しない設定の両方において有効であることを示すとともに,難易度の高いIEMOCAPデータセットに対する新しい最先端結果を得る。
- 参考スコア(独自算出の注目度): 16.044405846513495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large speech emotion recognition datasets are hard to obtain, and small
datasets may contain biases. Deep-net-based classifiers, in turn, are prone to
exploit those biases and find shortcuts such as speaker characteristics. These
shortcuts usually harm a model's ability to generalize. To address this
challenge, we propose a gradient-based adversary learning framework that learns
a speech emotion recognition task while normalizing speaker characteristics
from the feature representation. We demonstrate the efficacy of our method on
both speaker-independent and speaker-dependent settings and obtain new
state-of-the-art results on the challenging IEMOCAP dataset.
- Abstract(参考訳): 大きな音声感情認識データセットは入手が困難であり、小さなデータセットにはバイアスが含まれる可能性がある。
ディープネットベースの分類器は、そのバイアスを利用して話者特性などのショートカットを見つける傾向にある。
これらのショートカットは通常、モデルの一般化能力を損なう。
この課題に対処するために,特徴表現から話者特性を正規化しつつ,音声感情認識タスクを学習する勾配に基づく逆学習フレームワークを提案する。
提案手法は話者に依存しない設定と話者に依存しない設定の両方において有効であることを示すとともに,難易度の高いIEMOCAPデータセットに対する新しい最先端結果を得る。
関連論文リスト
- Revealing Emotional Clusters in Speaker Embeddings: A Contrastive
Learning Strategy for Speech Emotion Recognition [27.098672790099304]
感情情報は話者埋め込みに間接的に埋め込まれていると推定され、その未利用に繋がった。
本研究は,話者内クラスタの形で,感情と最先端の話者埋め込みの直接的かつ有用な関係を明らかにする。
音声の感情認識のための感情非ラベルデータに適用する新しいコントラスト事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-19T20:31:53Z) - Self-Supervised Disentangled Representation Learning for Robust Target Speech Extraction [17.05599594354308]
音声信号は、大域的な音響特性と局所的な意味情報の両方を含むため、本質的に複雑である。
対象音声抽出のタスクでは、参照音声における大域的・局所的な意味情報の特定の要素が話者の混乱を招く可能性がある。
本稿では,この課題を克服するために,自己教師付き不整合表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-16T03:48:24Z) - Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
本稿では,話者ダイアリゼーションシステムにおける意味情報を活用する新しい手法を提案する。
音声言語理解モジュールを導入し、話者関連意味情報を抽出する。
本稿では,これらの制約を話者ダイアリゼーションパイプラインに統合する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:30Z) - Improving Self-Supervised Speech Representations by Disentangling
Speakers [56.486084431528695]
音声における自己教師付き学習は、大規模無意味な音声コーパス上で、音声表現ネットワークを訓練することを含む。
話者を遠ざけることは非常に困難であり、スピーカー情報を削除すればコンテンツも失われる可能性がある。
本稿では,コンテンツが著しく失われることなく,話者のゆがみを解消できる新しいSSL手法を提案する。
論文 参考訳(メタデータ) (2022-04-20T04:56:14Z) - An Attribute-Aligned Strategy for Learning Speech Representation [57.891727280493015]
属性選択機構によってこれらの問題に柔軟に対処できる音声表現を導出する属性整合学習戦略を提案する。
具体的には、音声表現を属性依存ノードに分解する層式表現可変オートエンコーダ(LR-VAE)を提案する。
提案手法は,IDのないSER上での競合性能と,無感情SV上でのより良い性能を実現する。
論文 参考訳(メタデータ) (2021-06-05T06:19:14Z) - Embedded Emotions -- A Data Driven Approach to Learn Transferable
Feature Representations from Raw Speech Input for Emotion Recognition [1.4556324908347602]
本研究では,大規模テキストと音声コーパスから学習した知識を自動感情認識のタスクに適用する可能性について検討する。
その結果,学習した特徴表現を音声言語からの感情の分類に効果的に適用できることが示唆された。
論文 参考訳(メタデータ) (2020-09-30T09:18:31Z) - Augmentation adversarial training for self-supervised speaker
recognition [49.47756927090593]
話者ラベルのない頑健な話者認識モデルを訓練する。
VoxCelebとVOiCESデータセットの実験は、セルフスーパービジョンを使用した以前の作業よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-23T15:49:52Z) - Disentangled Speech Embeddings using Cross-modal Self-supervision [119.94362407747437]
本研究では,映像における顔と音声の自然な相互同期を生かした自己教師型学習目標を提案する。
我々は,(1)両表現に共通する低レベルの特徴を共有する2ストリームアーキテクチャを構築し,(2)これらの要因を明示的に解消する自然なメカニズムを提供する。
論文 参考訳(メタデータ) (2020-02-20T14:13:12Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。