Disentanglement with Factor Quantized Variational Autoencoders
- URL: http://arxiv.org/abs/2409.14851v1
- Date: Mon, 23 Sep 2024 09:33:53 GMT
- Title: Disentanglement with Factor Quantized Variational Autoencoders
- Authors: Gulcin Baykal, Melih Kandemir, Gozde Unal,
- Abstract summary: We propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model.
We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement.
Our method called FactorQVAE is the first method that combines optimization based disentanglement approaches with discrete representation learning.
- Score: 11.086500036180222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled representation learning aims to represent the underlying generative factors of a dataset in a latent representation independently of one another. In our work, we propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model. We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement. Furthermore, we propose incorporating an inductive bias into the model to further enhance disentanglement. Precisely, we propose scalar quantization of the latent variables in a latent representation with scalar values from a global codebook, and we add a total correlation term to the optimization as an inductive bias. Our method called FactorQVAE is the first method that combines optimization based disentanglement approaches with discrete representation learning, and it outperforms the former disentanglement methods in terms of two disentanglement metrics (DCI and InfoMEC) while improving the reconstruction performance. Our code can be found at \url{https://github.com/ituvisionlab/FactorQVAE}.
Related papers
- Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Distributional Learning of Variational AutoEncoder: Application to
Synthetic Data Generation [0.7614628596146602]
We propose a new approach that expands the model capacity without sacrificing the computational advantages of the VAE framework.
Our VAE model's decoder is composed of an infinite mixture of asymmetric Laplace distribution.
We apply the proposed model to synthetic data generation, and particularly, our model demonstrates superiority in easily adjusting the level of data privacy.
arXiv Detail & Related papers (2023-02-22T11:26:50Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Contrastively Disentangled Sequential Variational Autoencoder [20.75922928324671]
We propose a novel sequence representation learning method, named Contrastively Disentangled Sequential Variational Autoencoder (C-DSVAE)
We use a novel evidence lower bound which maximizes the mutual information between the input and the latent factors, while penalizes the mutual information between the static and dynamic factors.
Our experiments show that C-DSVAE significantly outperforms the previous state-of-the-art methods on multiple metrics.
arXiv Detail & Related papers (2021-10-22T23:00:32Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Disentangled Representation Learning and Generation with Manifold
Optimization [10.69910379275607]
This work presents a representation learning framework that explicitly promotes disentanglement by encouraging directions of variations.
Our theoretical discussion and various experiments show that the proposed model improves over many VAE variants in terms of both generation quality and disentangled representation learning.
arXiv Detail & Related papers (2020-06-12T10:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.