ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting
- URL: http://arxiv.org/abs/2202.01381v1
- Date: Thu, 3 Feb 2022 02:50:44 GMT
- Title: ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting
- Authors: Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, Steven Hoi
- Abstract summary: We propose ETSFormer, a novel time-series Transformer architecture, which exploits the principle of exponential smoothing in improving Transformers for time-series forecasting.
In particular, inspired by the classical exponential smoothing methods in time-series forecasting, we propose the novel exponential smoothing attention (ESA) and frequency attention (FA) to replace the self-attention mechanism in vanilla Transformers, thus improving both accuracy and efficiency.
- Score: 35.76867542099019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have been actively studied for time-series forecasting in recent
years. While often showing promising results in various scenarios, traditional
Transformers are not designed to fully exploit the characteristics of
time-series data and thus suffer some fundamental limitations, e.g., they
generally lack of decomposition capability and interpretability, and are
neither effective nor efficient for long-term forecasting. In this paper, we
propose ETSFormer, a novel time-series Transformer architecture, which exploits
the principle of exponential smoothing in improving Transformers for
time-series forecasting. In particular, inspired by the classical exponential
smoothing methods in time-series forecasting, we propose the novel exponential
smoothing attention (ESA) and frequency attention (FA) to replace the
self-attention mechanism in vanilla Transformers, thus improving both accuracy
and efficiency. Based on these, we redesign the Transformer architecture with
modular decomposition blocks such that it can learn to decompose the
time-series data into interpretable time-series components such as level,
growth and seasonality. Extensive experiments on various time-series benchmarks
validate the efficacy and advantages of the proposed method. The code and
models of our implementations will be released.
Related papers
- LSEAttention is All You Need for Time Series Forecasting [0.0]
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision.
I introduce textbfLSEAttention, an approach designed to address entropy collapse and training instability commonly observed in transformer models.
arXiv Detail & Related papers (2024-10-31T09:09:39Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
We propose iTransformer, which simply applies the attention and feed-forward network on the inverted dimensions.
The iTransformer model achieves state-of-the-art on challenging real-world datasets.
arXiv Detail & Related papers (2023-10-10T13:44:09Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
We design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting.
First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals.
Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions.
Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue.
arXiv Detail & Related papers (2023-05-20T05:16:31Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
We build a transformer model for non-stationary time series using wavelet-based transformer encoder architecture.
We evaluate our framework on several publicly available benchmark time series datasets from various domains.
arXiv Detail & Related papers (2022-09-08T17:39:38Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
Long-term time-series forecasting (LTSF) plays a crucial role in various practical applications.
Existing Transformer-based models, such as Fedformer and Informer, often achieve their best performances on validation sets after just a few epochs.
We propose a novel approach to address this issue by employing curriculum learning and introducing a memory-driven decoder.
arXiv Detail & Related papers (2022-07-16T04:05:15Z) - Are Transformers Effective for Time Series Forecasting? [13.268196448051308]
Recently, there has been a surge of Transformer-based solutions for the time series forecasting (TSF) task.
This study investigates whether Transformer-based techniques are the right solutions for long-term time series forecasting.
We find that the relatively higher long-term forecasting accuracy of Transformer-based solutions has little to do with the temporal relation extraction capabilities of the Transformer architecture.
arXiv Detail & Related papers (2022-05-26T17:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.