An Empirical Review of Optimization Techniques for Quantum Variational
Circuits
- URL: http://arxiv.org/abs/2202.01389v2
- Date: Fri, 4 Feb 2022 20:50:50 GMT
- Title: An Empirical Review of Optimization Techniques for Quantum Variational
Circuits
- Authors: Owen Lockwood
- Abstract summary: Quantum Variational Circuits (QVCs) are often claimed as one of the most potent uses of both near term and long term quantum hardware.
Standard approaches to optimizing these circuits rely on a classical system to compute the new parameters at every optimization step.
We empirically evaluate the potential of many common gradient and frees on a variety of optimization tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum Variational Circuits (QVCs) are often claimed as one of the most
potent uses of both near term and long term quantum hardware. The standard
approaches to optimizing these circuits rely on a classical system to compute
the new parameters at every optimization step. However, this process can be
extremely challenging both in terms of navigating the exponentially scaling
complex Hilbert space, barren plateaus, and the noise present in all
foreseeable quantum hardware. Although a variety of optimization algorithms are
employed in practice, there is often a lack of theoretical or empirical
motivations for this choice. To this end we empirically evaluate the potential
of many common gradient and gradient free optimizers on a variety of
optimization tasks. These tasks include both classical and quantum data based
optimization routines. Our evaluations were conducted in both noise free and
noisy simulations. The large number of problems and optimizers yields strong
empirical guidance for choosing optimizers for QVCs that is currently lacking.
Related papers
- Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
iteratively preconditioned gradient descent (IPG) for optimizing quantum circuits and demonstrate performance speedups for state preparation and implementation of quantum algorithmics.
We show an improvement in fidelity by a factor of $104$ for preparing a 4-qubit W state and a maximally entangled 5-qubit GHZ state compared to other commonly used classicals tuning the same ansatz.
We also show gains for optimizing a unitary for a quantum Fourier transform using IPG, and report results of running such optimized circuits on IonQ's quantum processing unit (QPU)
arXiv Detail & Related papers (2023-09-18T17:30:03Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - The QAOA with Few Measurements [4.713817702376467]
The Approximate Quantum Optimization Algorithm (QAOA) was originally developed to solve optimization problems.
Fully descriptive benchmarking techniques are often expensive for large numbers of qubits.
Some experimental quantum computing platforms such as neutral atom quantum computers have slow repetition rates.
arXiv Detail & Related papers (2022-05-13T18:42:20Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Training variational quantum algorithms is NP-hard [0.7614628596146599]
We show that the corresponding classical optimization problems are NP-hard.
Even for classically tractable systems composed of only logarithmically many qubits or free fermions, we show the optimization to be NP-hard.
arXiv Detail & Related papers (2021-01-18T19:00:01Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.