Deep Surface Reconstruction from Point Clouds with Visibility
Information
- URL: http://arxiv.org/abs/2202.01810v1
- Date: Thu, 3 Feb 2022 19:33:47 GMT
- Title: Deep Surface Reconstruction from Point Clouds with Visibility
Information
- Authors: Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Marlet, Bruno
Vallet
- Abstract summary: We present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation.
Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains.
- Score: 66.05024551590812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most current neural networks for reconstructing surfaces from point clouds
ignore sensor poses and only operate on raw point locations. Sensor visibility,
however, holds meaningful information regarding space occupancy and surface
orientation. In this paper, we present two simple ways to augment raw point
clouds with visibility information, so it can directly be leveraged by surface
reconstruction networks with minimal adaptation. Our proposed modifications
consistently improve the accuracy of generated surfaces as well as the
generalization ability of the networks to unseen shape domains. Our code and
data is available at https://github.com/raphaelsulzer/dsrv-data.
Related papers
- Unsupervised Inference of Signed Distance Functions from Single Sparse
Point Clouds without Learning Priors [54.966603013209685]
It is vital to infer signed distance functions (SDFs) from 3D point clouds.
We present a neural network to directly infer SDFs from single sparse point clouds.
arXiv Detail & Related papers (2023-03-25T15:56:50Z) - Parametric Surface Constrained Upsampler Network for Point Cloud [33.033469444588086]
We introduce a novel surface regularizer into the upsampler network by forcing the neural network to learn the underlying parametric surface represented by bicubic functions and rotation functions.
These designs are integrated into two different networks for two tasks that take advantages of upsampling layers.
The state-of-the-art experimental results on both tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-03-14T21:12:54Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
We propose SSN-Fitting to reconstruct a better signed distance field.
SSN-Fitting consists of a semi-signed supervision and a loss-based region sampling strategy.
We conduct experiments to demonstrate that SSN-Fitting achieves state-of-the-art performance under different settings.
arXiv Detail & Related papers (2022-06-14T09:40:17Z) - Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors [52.25114448281418]
Current methods are able to reconstruct surfaces by learning Signed Distance Functions (SDFs) from single point clouds without ground truth signed distances or point normals.
We propose to reconstruct highly accurate surfaces from sparse point clouds with an on-surface prior.
Our method can learn SDFs from a single sparse point cloud without ground truth signed distances or point normals.
arXiv Detail & Related papers (2022-04-22T09:45:20Z) - Deep Point Cloud Reconstruction [74.694733918351]
Point cloud obtained from 3D scanning is often sparse, noisy, and irregular.
To cope with these issues, recent studies have been separately conducted to densify, denoise, and complete inaccurate point cloud.
We propose a deep point cloud reconstruction network consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the initial densification and denoising, 2) a refinement via transformers converting the discrete voxels into 3D points.
arXiv Detail & Related papers (2021-11-23T07:53:28Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
We introduce RfD-Net that jointly detects and reconstructs dense object surfaces directly from point clouds.
We decouple the instance reconstruction into global object localization and local shape prediction.
Our approach consistently outperforms the state-of-the-arts and improves over 11 of mesh IoU in object reconstruction.
arXiv Detail & Related papers (2020-11-30T12:58:05Z) - Deep Positional and Relational Feature Learning for Rotation-Invariant
Point Cloud Analysis [107.9979381402172]
We propose a rotation-invariant deep network for point clouds analysis.
The network is hierarchical and relies on two modules: a positional feature embedding block and a relational feature embedding block.
Experiments show state-of-the-art classification and segmentation performances on benchmark datasets.
arXiv Detail & Related papers (2020-11-18T04:16:51Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
We propose to leverage the input point cloud as much as possible, by only adding connectivity information to existing points.
Our key innovation is a surrogate of local connectivity, calculated by comparing the intrinsic/extrinsic metrics.
We demonstrate that our method can not only preserve details, handle ambiguous structures, but also possess strong generalizability to unseen categories.
arXiv Detail & Related papers (2020-07-17T22:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.