Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation
- URL: http://arxiv.org/abs/2503.23670v1
- Date: Mon, 31 Mar 2025 02:27:02 GMT
- Title: Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation
- Authors: Takeshi Noda, Chao Chen, Junsheng Zhou, Weiqi Zhang, Yu-Shen Liu, Zhizhong Han,
- Abstract summary: Inferring signed distance functions (SDFs) from sparse point clouds remains a challenge in surface reconstruction.<n>We present a novel approach that learns a dynamic deformation network to predict SDFs in an end-to-end manner.<n> Experimental results on synthetic and real scanned datasets demonstrate that our method significantly outperforms the current state-of-the-art methods.
- Score: 50.26314343851213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring signed distance functions (SDFs) from sparse point clouds remains a challenge in surface reconstruction. The key lies in the lack of detailed geometric information in sparse point clouds, which is essential for learning a continuous field. To resolve this issue, we present a novel approach that learns a dynamic deformation network to predict SDFs in an end-to-end manner. To parameterize a continuous surface from sparse points, we propose a bijective surface parameterization (BSP) that learns the global shape from local patches. Specifically, we construct a bijective mapping for sparse points from the parametric domain to 3D local patches, integrating patches into the global surface. Meanwhile, we introduce grid deformation optimization (GDO) into the surface approximation to optimize the deformation of grid points and further refine the parametric surfaces. Experimental results on synthetic and real scanned datasets demonstrate that our method significantly outperforms the current state-of-the-art methods. Project page: https://takeshie.github.io/Bijective-SDF
Related papers
- Implicit Filtering for Learning Neural Signed Distance Functions from 3D Point Clouds [34.774577477968805]
We propose a novel non-linear implicit filter to smooth the implicit field while preserving geometry details.
Our novelty lies in that we can filter the surface (zero level set) by the neighbor input points with gradients of the signed distance field.
By moving the input raw point clouds along the gradient, our proposed implicit filtering can be extended to non-zero level sets.
arXiv Detail & Related papers (2024-07-18T09:40:24Z) - Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - LISR: Learning Linear 3D Implicit Surface Representation Using Compactly
Supported Radial Basis Functions [5.056545768004376]
Implicit 3D surface reconstruction of an object from its partial and noisy 3D point cloud scan is the classical geometry processing and 3D computer vision problem.
We propose a neural network architecture for learning the linear implicit shape representation of the 3D surface of an object.
The proposed approach achieves better Chamfer distance and comparable F-score than the state-of-the-art approach on the benchmark dataset.
arXiv Detail & Related papers (2024-02-11T20:42:49Z) - Unsupervised Inference of Signed Distance Functions from Single Sparse
Point Clouds without Learning Priors [54.966603013209685]
It is vital to infer signed distance functions (SDFs) from 3D point clouds.
We present a neural network to directly infer SDFs from single sparse point clouds.
arXiv Detail & Related papers (2023-03-25T15:56:50Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization [54.69408516025872]
CAP-UDF is a novel method to learn consistency-aware UDF from raw point clouds.
We train a neural network to gradually infer the relationship between queries and the approximated surface.
We also introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF.
arXiv Detail & Related papers (2022-10-06T08:51:08Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models.
This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation.
arXiv Detail & Related papers (2021-06-10T14:31:54Z) - Learning Occupancy Function from Point Clouds for Surface Reconstruction [6.85316573653194]
Implicit function based surface reconstruction has been studied for a long time to recover 3D shapes from point clouds sampled from surfaces.
This paper proposes a novel method for learning occupancy functions from sparse point clouds and achieves better performance on challenging surface reconstruction tasks.
arXiv Detail & Related papers (2020-10-22T02:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.