論文の概要: Danish Airs and Grounds: A Dataset for Aerial-to-Street-Level Place
Recognition and Localization
- arxiv url: http://arxiv.org/abs/2202.01821v1
- Date: Thu, 3 Feb 2022 19:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-07 16:12:36.384678
- Title: Danish Airs and Grounds: A Dataset for Aerial-to-Street-Level Place
Recognition and Localization
- Title(参考訳): デンマークのairs and grounds: 空中から路上への位置認識と位置推定のためのデータセット
- Authors: Andrea Vallone, Frederik Warburg, Hans Hansen, S{\o}ren Hauberg and
Javier Civera
- Abstract要約: 我々は,この事例を対象とする道路や航空画像の大規模な収集であるemphDanish Airs and Groundsデータセットにコントリビュートする。
データセットは、都市部、郊外部、農村部で50km以上の道路を含む、現在利用可能なデータよりも大きく、多様である。
そこで本研究では,まず空中画像から高密度な3次元再構成を推定し,検索したストリートレベルの画像と3次元モデルのストリートレベルのレンダリングをマッチングするマップ・ツー・イメージ再配置パイプラインを提案する。
- 参考スコア(独自算出の注目度): 9.834635805575584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Place recognition and visual localization are particularly challenging in
wide baseline configurations. In this paper, we contribute with the
\emph{Danish Airs and Grounds} (DAG) dataset, a large collection of
street-level and aerial images targeting such cases. Its main challenge lies in
the extreme viewing-angle difference between query and reference images with
consequent changes in illumination and perspective. The dataset is larger and
more diverse than current publicly available data, including more than 50 km of
road in urban, suburban and rural areas. All images are associated with
accurate 6-DoF metadata that allows the benchmarking of visual localization
methods.
We also propose a map-to-image re-localization pipeline, that first estimates
a dense 3D reconstruction from the aerial images and then matches query
street-level images to street-level renderings of the 3D model. The dataset can
be downloaded at: https://frederikwarburg.github.io/DAG
- Abstract(参考訳): 位置認識と視覚的ローカライゼーションは、幅広いベースライン構成において特に困難である。
本稿では,これらの事例を対象とする街路画像と航空画像の大規模な収集である<emph{Danish Airs and Grounds} (DAG) データセットに貢献する。
その主な課題は、照度と視点の変化によるクエリと参照イメージの極端な視角差である。
データセットは、都市部、郊外部、農村部で50km以上の道路を含む、現在利用可能なデータよりも大きく、多様である。
すべての画像は正確な6-dofメタデータに関連付けられ、視覚的ローカライゼーションメソッドのベンチマークを可能にする。
また,地図から画像への再局在化パイプラインを提案し,まず空中画像から高密度な3d再構成を推定し,クエリーのストリートレベル画像と3dモデルのストリートレベルレンダリングとをマッチングする。
データセットは、https://frederikwarburg.github.io/DAGでダウンロードできる。
関連論文リスト
- OpenStreetView-5M: The Many Roads to Global Visual Geolocation [16.468438245804684]
我々は5100万以上のジオレファレンスストリートビュー画像からなる大規模オープンアクセスデータセットOpenStreetView-5Mを紹介した。
既存のベンチマークとは対照的に、厳格な列車/テスト分離を強制し、学習された地理的特徴の関連性を評価する。
データセットの有用性を実証するために,様々な最先端の画像エンコーダ,空間表現,トレーニング戦略の広範なベンチマークを行う。
論文 参考訳(メタデータ) (2024-04-29T17:06:44Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
本稿では,3次元スパース表現に拡散モデルを導入し,それらをニューラルレンダリング技術と組み合わせることで,直接3次元シーン生成のための新しいアーキテクチャを提案する。
具体的には、まず3次元拡散モデルを用いて、所定の幾何学の点レベルのテクスチャ色を生成し、次にフィードフォワード方式でシーン表現に変換する。
2つの都市規模データセットを用いた実験により,衛星画像から写真リアルなストリートビュー画像シーケンスとクロスビュー都市シーンを生成する能力を示した。
論文 参考訳(メタデータ) (2024-01-19T16:15:37Z) - C-BEV: Contrastive Bird's Eye View Training for Cross-View Image
Retrieval and 3-DoF Pose Estimation [27.870926763424848]
本稿では,ベクトルを埋め込み表現としてではなく,鳥眼ビュー(BEV)マップを用いた新しい学習可能な検索アーキテクチャを提案する。
我々のC-BEV法は,複数のデータセットの検索タスクにおける最先端のタスクを大きなマージンで超えている。
論文 参考訳(メタデータ) (2023-12-13T11:14:57Z) - CityRefer: Geography-aware 3D Visual Grounding Dataset on City-scale
Point Cloud Data [15.526523262690965]
都市レベルの視覚的接地のためのCityReferデータセットについて紹介する。
データセットは、SensatUrbanの都市シーンに現れる3Dオブジェクトの35kの自然言語記述と、OpenStreetMapと同期する5kのランドマークラベルで構成されている。
論文 参考訳(メタデータ) (2023-10-28T18:05:32Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
地理的レベルの異なる関係を利用して、エンドツーエンドのトランスフォーマーベースのアーキテクチャを導入する。
4つの標準ジオローカライゼーションデータセット上で,アートストリートレベルの精度を実現する。
論文 参考訳(メタデータ) (2023-03-07T21:47:58Z) - GAMa: Cross-view Video Geo-localization [68.33955764543465]
我々は、文脈的手がかりを提供する画像ではなく、地上ビデオに焦点を当てている。
クリップレベルでは、短いビデオクリップと対応する空中画像が一致し、後に長いビデオの動画レベルのジオローカライズを得るために使用される。
提案手法は,トップ1リコール率19.4%,45.1%@1.0マイルを達成する。
論文 参考訳(メタデータ) (2022-07-06T04:25:51Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
センサットウルバン(SensatUrban)は、イギリスの3都市から収集された7.6km2の30億点近くからなる、都市規模のUAV測光点クラウドデータセットである。
データセットの各ポイントは、粒度の細かいセマンティックアノテーションでラベル付けされ、その結果、既存の最大のフォトグラムポイントクラウドデータセットの3倍の大きさのデータセットが生成される。
論文 参考訳(メタデータ) (2022-01-12T14:48:11Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
スイスの3つの都市から採取された総面積2.7 km2$の屋外3Dポイントクラウドデータセットを紹介した。
データセットは、ポイントごとのラベルによるセマンティックセグメンテーションのために手動でアノテートされ、高解像度カメラを備えたマルチローターによって取得された画像のフォトグラムを用いて構築される。
論文 参考訳(メタデータ) (2020-12-23T21:48:47Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z) - AiRound and CV-BrCT: Novel Multi-View Datasets for Scene Classification [2.931113769364182]
本稿では,thedatasetand CV-BrCTという2つの新しいデータセットを提案する。
1つ目は、世界中の様々な場所から抽出された視点の異なる、同じ地理的座標からの3つの画像を含む。
第2のデータセットには、ブラジル南東部から抽出された空中画像とストリートレベルの画像が含まれている。
論文 参考訳(メタデータ) (2020-08-03T18:55:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。