Self-supervised Learning with Random-projection Quantizer for Speech
Recognition
- URL: http://arxiv.org/abs/2202.01855v1
- Date: Thu, 3 Feb 2022 21:29:04 GMT
- Title: Self-supervised Learning with Random-projection Quantizer for Speech
Recognition
- Authors: Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, Yonghui Wu
- Abstract summary: We present a simple and effective self-supervised learning approach for speech recognition.
The approach learns a model to predict masked speech signals, in the form of discrete labels.
It achieves similar word-error-rates as previous work using self-supervised learning with non-streaming models.
- Score: 51.24368930992091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a simple and effective self-supervised learning approach for
speech recognition. The approach learns a model to predict the masked speech
signals, in the form of discrete labels generated with a random-projection
quantizer. In particular the quantizer projects speech inputs with a randomly
initialized matrix, and does a nearest-neighbor lookup in a
randomly-initialized codebook. Neither the matrix nor the codebook is updated
during self-supervised learning. Since the random-projection quantizer is not
trained and is separated from the speech recognition model, the design makes
the approach flexible and is compatible with universal speech recognition
architecture. On LibriSpeech our approach achieves similar word-error-rates as
previous work using self-supervised learning with non-streaming models, and
provides lower word-error-rates and latency than wav2vec 2.0 and w2v-BERT with
streaming models. On multilingual tasks the approach also provides significant
improvement over wav2vec 2.0 and w2v-BERT.
Related papers
- SyllableLM: Learning Coarse Semantic Units for Speech Language Models [21.762112843104028]
We introduce a controllable self-supervised technique to merge speech representations into coarser syllable-like units.
Our method produces controllable-rate semantic units at as low as 5Hz and 60bps and SotA inc segmentation and clustering.
SyllableLM achieves significant improvements in efficiency with a 30x reduction in training compute and a 4x wall-clock inference speedup.
arXiv Detail & Related papers (2024-10-05T04:29:55Z) - Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
Finetuning self-supervised multilingual representations reduces absolute word error rates by up to 20%.
In circumstances with limited training data finetuning self-supervised representations is a better performing and viable solution.
arXiv Detail & Related papers (2023-11-25T17:05:21Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data.
We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task.
This process stands on its own, or can be applied as low-cost second-stage pre-training.
arXiv Detail & Related papers (2022-05-02T17:59:02Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
We introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes.
The proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training.
arXiv Detail & Related papers (2022-03-31T15:33:56Z) - Conformer-Based Self-Supervised Learning for Non-Speech Audio Tasks [20.316239155843963]
We propose a self-supervised audio representation learning method and apply it to a variety of downstream non-speech audio tasks.
On the AudioSet benchmark, we achieve a mean average precision (mAP) score of 0.415, which is a new state-of-the-art on this dataset.
arXiv Detail & Related papers (2021-10-14T12:32:40Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
We propose wav2vec-Switch, a method to encode noise robustness into contextualized representations of speech.
Specifically, we feed original-noisy speech pairs simultaneously into the wav2vec 2.0 network.
In addition to the existing contrastive learning task, we switch the quantized representations of the original and noisy speech as additional prediction targets.
arXiv Detail & Related papers (2021-10-11T00:08:48Z) - Continual-wav2vec2: an Application of Continual Learning for
Self-Supervised Automatic Speech Recognition [0.23872611575805824]
We present a method for continual learning of speech representations for multiple languages using self-supervised learning (SSL)
Wav2vec models perform SSL on raw audio in a pretraining phase and then finetune on a small fraction of annotated data.
We use ideas from continual learning to transfer knowledge from a previous task to speed up pretraining a new language task.
arXiv Detail & Related papers (2021-07-26T10:39:03Z) - Fast End-to-End Speech Recognition via a Non-Autoregressive Model and
Cross-Modal Knowledge Transferring from BERT [72.93855288283059]
We propose a non-autoregressive speech recognition model called LASO (Listen Attentively, and Spell Once)
The model consists of an encoder, a decoder, and a position dependent summarizer (PDS)
arXiv Detail & Related papers (2021-02-15T15:18:59Z) - Investigation of Speaker-adaptation methods in Transformer based ASR [8.637110868126548]
This paper explores different ways of incorporating speaker information at the encoder input while training a transformer-based model to improve its speech recognition performance.
We present speaker information in the form of speaker embeddings for each of the speakers.
We obtain improvements in the word error rate over the baseline through our approach of integrating speaker embeddings into the model.
arXiv Detail & Related papers (2020-08-07T16:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.