A vector quantized masked autoencoder for audiovisual speech emotion recognition
- URL: http://arxiv.org/abs/2305.03568v3
- Date: Fri, 09 May 2025 08:19:45 GMT
- Title: A vector quantized masked autoencoder for audiovisual speech emotion recognition
- Authors: Samir Sadok, Simon Leglaive, Renaud Séguier,
- Abstract summary: VQ-MAE-AV is a self-supervised multimodal model that leverages masked autoencoders to learn representations of audiovisual speech without labels.<n>The model is designed to extract both local (i.e., at the frame level) and global (i.e., at the sequence level) representations of audiovisual speech.<n>The proposed approach achieves state-of-the-art emotion recognition results across several datasets in both controlled and in-the-wild conditions.
- Score: 5.8641712963450825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important challenge in emotion recognition is to develop methods that can leverage unlabeled training data. In this paper, we propose the VQ-MAE-AV model, a self-supervised multimodal model that leverages masked autoencoders to learn representations of audiovisual speech without labels. The model includes vector quantized variational autoencoders that compress raw audio and visual speech data into discrete tokens. The audiovisual speech tokens are used to train a multimodal masked autoencoder that consists of an encoder-decoder architecture with attention mechanisms. The model is designed to extract both local (i.e., at the frame level) and global (i.e., at the sequence level) representations of audiovisual speech. During self-supervised pre-training, the VQ-MAE-AV model is trained on a large-scale unlabeled dataset of audiovisual speech, for the task of reconstructing randomly masked audiovisual speech tokens and with a contrastive learning strategy. During this pre-training, the encoder learns to extract a representation of audiovisual speech that can be subsequently leveraged for emotion recognition. During the supervised fine-tuning stage, a small classification model is trained on top of the VQ-MAE-AV encoder for an emotion recognition task. The proposed approach achieves state-of-the-art emotion recognition results across several datasets in both controlled and in-the-wild conditions.
Related papers
- CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - Robust Audiovisual Speech Recognition Models with Mixture-of-Experts [67.75334989582709]
We introduce EVA, leveraging the mixture-of-Experts for audioVisual ASR to perform robust speech recognition for in-the-wild'' videos.
We first encode visual information into visual tokens sequence and map them into speech space by a lightweight projection.
Experiments show our model achieves state-of-the-art results on three benchmarks.
arXiv Detail & Related papers (2024-09-19T00:08:28Z) - EnCodecMAE: Leveraging neural codecs for universal audio representation learning [16.590638305972632]
We propose masking representations of the audio signal, and training a MAE to reconstruct the masked segments.
We evaluate this approach, which we call EnCodecMAE, on a wide range of tasks involving speech, music and environmental sounds.
arXiv Detail & Related papers (2023-09-14T02:21:53Z) - A multimodal dynamical variational autoencoder for audiovisual speech
representation learning [23.748108659645844]
multimodal and dynamical VAE (MDVAE) applied to unsupervised audio-visual speech representation learning.
Experiments include manipulating audiovisual speech, audiovisual facial image denoising, and audiovisual speech emotion recognition.
arXiv Detail & Related papers (2023-05-05T14:37:26Z) - A vector quantized masked autoencoder for speech emotion recognition [3.985839436158186]
We propose the vector quantized masked autoencoder for speech (VQ-MAE-S), a self-supervised model that is fine-tuned to recognize emotions from speech signals.
Experimental results show that the proposed VQ-MAE-S model, pre-trained on the VoxCeleb2 dataset, outperforms an MAE working on the raw spectrogram representation.
arXiv Detail & Related papers (2023-04-21T16:37:57Z) - Audiovisual Masked Autoencoders [93.22646144125457]
We show that we can achieve significant improvements on audiovisual downstream classification tasks.
We additionally demonstrate the transferability of our representations, achieving state-of-the-art audiovisual results on Epic Kitchens.
arXiv Detail & Related papers (2022-12-09T17:34:53Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Contrastive Audio-Visual Masked Autoencoder [85.53776628515561]
Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE)
Our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound.
arXiv Detail & Related papers (2022-10-02T07:29:57Z) - Self-supervised Learning with Random-projection Quantizer for Speech
Recognition [51.24368930992091]
We present a simple and effective self-supervised learning approach for speech recognition.
The approach learns a model to predict masked speech signals, in the form of discrete labels.
It achieves similar word-error-rates as previous work using self-supervised learning with non-streaming models.
arXiv Detail & Related papers (2022-02-03T21:29:04Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - Fast End-to-End Speech Recognition via a Non-Autoregressive Model and
Cross-Modal Knowledge Transferring from BERT [72.93855288283059]
We propose a non-autoregressive speech recognition model called LASO (Listen Attentively, and Spell Once)
The model consists of an encoder, a decoder, and a position dependent summarizer (PDS)
arXiv Detail & Related papers (2021-02-15T15:18:59Z) - Deep Variational Generative Models for Audio-visual Speech Separation [33.227204390773316]
We propose an unsupervised technique based on audio-visual generative modeling of clean speech.
To better utilize the visual information, the posteriors of the latent variables are inferred from mixed speech.
Our experiments show that the proposed unsupervised VAE-based method yields better separation performance than NMF-based approaches.
arXiv Detail & Related papers (2020-08-17T10:12:33Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
We propose a method to learn self-supervised speech representations from the raw audio waveform.
We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio)
Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
arXiv Detail & Related papers (2020-07-08T14:07:06Z) - Unsupervised Audiovisual Synthesis via Exemplar Autoencoders [59.13989658692953]
We present an unsupervised approach that converts the input speech of any individual into audiovisual streams of potentially-infinitely many output speakers.
We use Exemplar Autoencoders to learn the voice, stylistic prosody, and visual appearance of a specific target speech exemplar.
arXiv Detail & Related papers (2020-01-13T18:56:45Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.