論文の概要: Research on Patch Attentive Neural Process
- arxiv url: http://arxiv.org/abs/2202.01884v1
- Date: Sat, 29 Jan 2022 03:38:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-14 01:04:24.546572
- Title: Research on Patch Attentive Neural Process
- Title(参考訳): パッチ感応神経プロセスに関する研究
- Authors: Xiaohan Yu and Shaochen Mao
- Abstract要約: Attentive Neural Process(ANP)は、Neural Process(NP)の適合性を改善し、その予測精度を向上させる。
視覚変換器(ViT)やMasked Auto-Encoder(MAE)などのモデルにヒントを得て,画像パッチを入力としてPatch Attentive Neural Process(PANP)を提案する。
- 参考スコア(独自算出の注目度): 3.0712335337791288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attentive Neural Process (ANP) improves the fitting ability of Neural Process
(NP) and improves its prediction accuracy, but the higher time complexity of
the model imposes a limitation on the length of the input sequence. Inspired by
models such as Vision Transformer (ViT) and Masked Auto-Encoder (MAE), we
propose Patch Attentive Neural Process (PANP) using image patches as input and
improve the structure of deterministic paths based on ANP, which allows the
model to extract image features more accurately and efficiently reconstruction.
- Abstract(参考訳): Attentive Neural Process (ANP) は、ニューラルネットワーク(NP)の適合性を向上し、その予測精度を向上させるが、より高い時間複雑さは入力シーケンスの長さに制限を与える。
視覚変換器 (ViT) や Masked Auto-Encoder (MAE) などのモデルにインスパイアされ, 画像パッチを入力とし, ANP に基づく決定論的経路の構造を改善し, より正確かつ効率的に画像特徴を抽出することを可能にするパッチ検出ニューラルプロセス (PANP) を提案する。
関連論文リスト
- PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks [30.701422594374456]
本稿では,任意の多面体出力集合のアンダー・アンド・オーバー近似を生成する事前抽象化のためのフレームワークを提案する。
提案手法を様々なタスクで評価し,高インプット次元画像分類タスクに対する効率とスケーラビリティの大幅な向上を示す。
論文 参考訳(メタデータ) (2024-08-17T17:24:47Z) - Variational Bayes image restoration with compressive autoencoders [4.879530644978008]
逆問題の正規化は、計算イメージングにおいて最重要となる。
本研究では,まず,最先端生成モデルの代わりに圧縮型オートエンコーダを提案する。
第2の貢献として、変分ベイズ潜時推定(VBLE)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:49:31Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
Sequence Modeling [26.377099481072992]
本稿では,不確実性を考慮したメタ学習のためのトランスフォーマーニューラルプロセス(TNP)を提案する。
我々は自己回帰的可能性に基づく目的を通してTNPを学習し、それを新しいトランスフォーマーベースのアーキテクチャでインスタンス化する。
我々は,TNPが様々なベンチマーク問題に対して最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2022-07-09T02:28:58Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。