Engineering nanoscale hypersonic phonon transport
- URL: http://arxiv.org/abs/2202.02166v2
- Date: Wed, 9 Feb 2022 11:05:55 GMT
- Title: Engineering nanoscale hypersonic phonon transport
- Authors: O. Florez, G. Arregui, M. Albrechtsen, R. C. Ng, J. Gomis-Bresco, S.
Stobbe, C. M. Sotomayor-Torres, P. D. Garc\'ia
- Abstract summary: Thermal vibrations represent a source of noise and dephasing for many physical processes at the quantum level.
One strategy to avoid these vibrations is to structure a solid that has a phononic stop band.
Here, we demonstrate the complete absence of mechanical vibrations at room temperature over a broad spectral window.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling the vibrations in solids is crucial to tailor their mechanical
properties and their interaction with light. Thermal vibrations represent a
source of noise and dephasing for many physical processes at the quantum level.
One strategy to avoid these vibrations is to structure a solid such that it
possesses a phononic stop band, i.e., a frequency range over which there are no
available mechanical modes. Here, we demonstrate the complete absence of
mechanical vibrations at room temperature over a broad spectral window, with a
5.3 GHz wide band gap centered at 8.4 GHz in a patterned silicon nanostructure
membrane measured using Brillouin light scattering spectroscopy. By
constructing a line-defect waveguide, we directly measure GHz localized modes
at room temperature. Our experimental results of thermally excited guided
mechanical modes at GHz frequencies provides an eficient platform for
photon-phonon integration with applications in optomechanics and signal
processing transduction.
Related papers
- Ultracoherent GHz Diamond Spin-Mechanical Lamb Wave Resonators [3.429872985574403]
We develop an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force.
We detect the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy.
arXiv Detail & Related papers (2024-08-23T23:10:58Z) - Room-temperature quantum optomechanics using an ultra-low noise cavity [0.0]
We demonstrate optomechanical squeezing at room temperature in a phononic-engineered membrane-in-the-middle system.
By using a high finesse cavity whose mirrors are patterned with phononic crystal structures, we reduce cavity frequency noise by more than 700-fold.
These advances enable operation within a factor of 2.5 of the Heisenberg limit, leading to squeezing of the probing field by 1.09 dB below the vacuum fluctuations.
arXiv Detail & Related papers (2023-09-26T16:27:32Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Tunable graphene phononic crystal [0.0]
We take advantage of graphene's flexibility and mechanically tune a finite size phononic crystal.
Under electrostatic pressure up to 30 kPa, we observe an upshift in frequency of the entire phononic system by more than 350%.
arXiv Detail & Related papers (2020-11-30T11:35:36Z) - Thermal intermodulation noise in cavity-based measurements [0.0]
We show that nonlinearly transduced thermal fluctuations of cavity frequency can dominate the broadband noise in photodetection.
We report and characterize thermal intermodulation noise in an optomechanical cavity, where the frequency fluctuations are caused by mechanical Brownian motion.
arXiv Detail & Related papers (2020-04-12T21:24:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.