Correlated Dephasing in a Piezoelectrically Transduced Silicon Phononic Waveguide
- URL: http://arxiv.org/abs/2502.16426v1
- Date: Sun, 23 Feb 2025 03:49:15 GMT
- Title: Correlated Dephasing in a Piezoelectrically Transduced Silicon Phononic Waveguide
- Authors: Oliver A. Hitchcock, Felix M. Mayor, Wentao Jiang, Matthew P. Maksymowych, Sultan Malik, Amir H. Safavi-Naeini,
- Abstract summary: We design, fabricate, and characterize a compact silicon single-mode phononic waveguide actuated by a thin-film lithium niobate piezoelectric element.<n>Our device directly transduces between microwave frequency photons and phonons propagating in the silicon waveguide, providing a route for coupling to superconducting circuits.
- Score: 2.7975252049432853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nanomechanical waveguides offer a multitude of applications in quantum and classical technologies. Here, we design, fabricate, and characterize a compact silicon single-mode phononic waveguide actuated by a thin-film lithium niobate piezoelectric element. Our device directly transduces between microwave frequency photons and phonons propagating in the silicon waveguide, providing a route for coupling to superconducting circuits. We probe the device at millikelvin temperatures through a superconducting microwave resonant matching cavity to reveal harmonics of the silicon waveguide and extract a piezoelectric coupling rate $g/2\pi= 1.1$ megahertz and a mechanical coupling rate $f/2\pi=5$ megahertz. Through time-domain measurements of the silicon mechanical modes, we observe energy relaxation timescales of $T_{1,\text{in}} \approx 500$ microseconds, pure dephasing timescales of $T_\phi \approx {60}$ microseconds and dephasing dynamics that indicate the presence of an underlying frequency noise process with a non-uniform spectral distribution. We measure phase noise cross-correlations between silicon mechanical modes and observe detuning-dependent positively-correlated frequency fluctuations. Our measurements provide valuable insights into the dynamics and decoherence characteristics of hybrid piezoelectric-silicon acoustic devices, and suggest approaches for mitigating and circumventing noise processes for emerging quantum acoustic systems.
Related papers
- Phononic Crystals in Superfluid Thin-Film Helium [49.1574468325115]
Mechanical excitations in superfluid thin films interact with the optical mode of an optical microresonator by modulation of its effective refractive index.
We realize a phononic crystal cavity confining third sound modes in a superfluid helium film to length scales close to the third sound wavelength.
arXiv Detail & Related papers (2024-02-28T11:45:35Z) - Two-dimensional optomechanical crystal resonator in gallium arsenide [5.523034730355238]
A promising platform for this is an optomechanical crystal resonator.
We adapt this design to gallium arsenide, a natural thin-film single-crystal piezoelectric.
arXiv Detail & Related papers (2023-07-26T19:05:56Z) - Flexible Integration of Gigahertz Nanomechanical Resonators with a
Superconducting Microwave Resonator using a Bonded Flip-Chip Method [1.9999259391104391]
We demonstrate strong coupling of gigahertz- nanofrequency resonators to a frequency-tunable superconducting microwave resonator via a galvanically bonded flip-chip method.
Our work represents a step towards a plug-and-play architecture for building more complex hybrid quantum systems.
arXiv Detail & Related papers (2023-04-26T14:39:37Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Engineering nanoscale hypersonic phonon transport [0.0]
Thermal vibrations represent a source of noise and dephasing for many physical processes at the quantum level.
One strategy to avoid these vibrations is to structure a solid that has a phononic stop band.
Here, we demonstrate the complete absence of mechanical vibrations at room temperature over a broad spectral window.
arXiv Detail & Related papers (2022-02-04T14:50:20Z) - Microwave-to-optical conversion with a gallium phosphide photonic
crystal cavity [0.0]
We present a novel platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits.
We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of $sim$ 200 kHz.
arXiv Detail & Related papers (2021-05-27T15:40:14Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.